Вегетативная нервная система (ВНС). Медиаторы вегетативной нервной системы - ацетилхолин и норадреналин. Вегетативные ганглии Что такое вегетативная нервная система

У позвоночных животных в автономной нервной системе имеется три вида синаптической передачи: электрическая, химическая и смешанная. Органом с типичными электрическими синапсами является цилиарный ганглий птиц, лежащий в глубине глазницы у основания глазного яблока. Передача возбуждения здесь осуществляется практически без задержки в обоих направлениях. К редко встречающимся можно отнести и передачу через смешанные синапсы, в которых одновременно соседствуют структуры электрических и химических синапсов. Этот вид также характерен для цилиарного ганглия птиц. Основным же способом передачи возбуждения в автономной нервной системе является химический. Он осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон или эффектор зависит от природы рецептора постсинаптической мембраны.

В автономной нервной системе насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие биогенные амины, аминокислоты, АТФ. В зависимости от того, какой основной медиатор выделяется окончаниями аксонов автономных нейронов, эти клетки принято называть холинергическими, адренергическими, серотоиинергическими, пуринергическими и т. д. нейронами.

Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса. Так, ацетилхолин выделяется в окончаниях всех преганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических окончаний. Кроме того, часть постганглионарных симпатических волокон, иннервирующих потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью ацетилхолина. В свою очередь норадреналин является медиатором в постганглионарных симпатических окончаниях (за исключением нервов потовых желез и симпатических вазодилататоров) - сосудов сердца, печени, селезенки.

Медиатор, освобождающийся в пресинаптических терминалах под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и образует с ним комплексное соединение. Белок, с которым взаимодействует ацетилхолин, носит название холинорецептора, адреналин или норадреналин - адренорецептора и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специальных пресинаптических рецепторов, которые участвуют в механизме обратной связи регуляции медиаторного процесса в синапсе.


Помимо холино-, адрено-, пуринорецепторов, в периферической части автономной нервной системы имеются рецепторы пептидов, дофамина, простагландинов. Все виды рецепторов, вначале обнаруженные в периферической части автономной нервной системы, были найдены затем в пре- и постсинаптических мембранах ядерных структур ЦНС.

Характерной реакцией автономной нервной системы является резкое повышение ее чувствительности к медиаторам после денервации органов. Например, после ваготомии орган обладает повышенной чувствительностью к ацетилхолину, соответственно после симпатэктомии - к норадреналину. Полагают, что в основе этого явления лежит резкое возрастание числа соответствующих рецепторов постсинаптической мембраны, а также снижение содержания или активности ферментов, расщепляющих медиатор (ацетилхолин-эстераза, моноаминоксидаза и др.).

В автономной нервной системе, помимо обычных эффекторных нейронов, существуют еще специальные клетки, соответствующиепостганглионарным структурам и выполняющие их функцию. Передача возбуждения к ним осуществляется обычным химическим путем, а отвечают они эндокринным способом. Эти клетки получили название трансдукторов. Их аксоны не формируют синаптических контактов с эффекторными органами, а свободно заканчиваются вокруг сосудов, с которыми образуют так называемые гемальные органы. К трансдукторам относят следующие клетки: 1) хромаффинные клетки мозгового слоя надпочечников, которые на холинергический передатчик преганглионарного симпатического окончания отвечают выделением адреналина и норадреналина; 2) юкста-гломерулярные клетки почки, которые отвечают на адренергический передатчик постганглионарного симпатического волокна выделением в кровяное русло ренина; 3) нейроны гипоталамических супраоптического и паравентрикулярного ядер, реагирующие на синаптический приток разной природы выделением вазопрессина и окситоцина; 4) нейроны ядер гипоталамуса.

Действие основных классических меадиаторов может быть воспроизведено с помощью фармакологических препаратов. Например, никотин вызывает эффект, подобный эффекту ацетилхолина, при действии на постсинаптическую мембрану постганглионарного ней­рона, в то время как сложные эфиры холина и токсин мухомора мускарин - на постсинаптическую мембрану эффекторной клетки висцерального органа. Следовательно, никотин вмешивается в меж­нейронную передачу в автономном ганглии, мускарин - в нейро-эффекторную передачу в исполнительном органе. На этом основании считают, что имеется соответственно два типа холинорецепторов: никотиновые (Н-холинорецепторы) и мускариновые (М-холинорецепторы). В зависимости от чувствительности к различным катехоламинам адренорецепторы делят на α-адренорецепторы и β-адренорецепторы. Их существование установлено посредством фармакологических препаратов, избирательно действующих на определенный вид адренорецепторов.

В ряде висцеральных органов, реагирующих на катехоламины, находятся оба вида адренорецепторов, но результаты их возбуждения бывают, как правило, противоположными. Например, в кровеносных сосудах скелетных мышц имеются α- и β-адреноре­цепторы. Возбуждение α-адренорецепторов приводит к сужению, а β-адренорецепторов - к расширению артериол. Оба вида адрено­рецепторов обнаружены и в стенке кишки, однако реакция органа при возбуждении каждого из видов будет однозначно характеризоваться торможением активности гладких мышечных клеток. В сердце и бронхах нет α-адренорецепторов и медиатор взаимодействует толь­ко с β-адренорецепторами, что сопровождается усилением сердечных сокращений и расширением бронхов. В связи с тем что норадреналин вызывает наибольшее возбуждение β-адренорецепторов сердечной мышцы и слабую реакцию бронхов, трахеи, сосудов, первые стали называть β1-адренорецепторами, вторые - β2-адренорецепторами.

При действии на мембрану гладкой мышечной клетки адреналин и норадреналин активируют находящуюся в клеточной мембране аденилатциклазу. При наличии ионов Mg2+ этот фермент катализирует образование в клетке цАМФ (циклического 3" ,5" -аденозинмонофосфата) из АТФ. Последний продукт в свою очередь вызывает ряд физиологических эффектов, активируя энергетический обмен, стимулируя сердечную деятельность.

Особенностью адренергического нейрона является то, что он обладает чрезвычайно длинными тонкими аксонами, которые разветвляются в органах и образуют густые сплетения. Общая длина таких аксонных терминалей может достигать 30 см. По ходу терминалей имеются многочисленные расширения - варикозы, в которых синтезируется, запасается и выделяется медиатор. С приходом импульса норадреналин одновременно выделяется из многочисленных расширений, действуя сразу на большую площадь гладкомышечной ткани. Таким образом, деполяризация мышечных клеток сопровождается одновременным сокращением всего органа.

Различные лекарственные средства, оказывающие на эффекторный орган действие, аналогичное действию постганглионарного во­локна (симпатического, парасимпатического и т.п.), получили название миметиков (адрено-, холиномиметики). Наряду с этим имеются и вещества, избирательно блокирующие функцию рецепторов постсинаптической мембраны. Они названы ганглиоблокаторами. Например, аммониевые соединения избирательно выключают Н-холинорецепторы, а атропин и скополамин - М-холинорецепторы.

Классические медиаторы выполняют не только функцию передатчиков возбуждения, но обладают и общебиологическим действием. К ацетилхолину наиболее чувствительна сердечнососудистая система, он вызывает и усиленную моторику пищеварительного тракта, активируя одновременно деятельность пищеварительных желез, сокращает мускулатуру бронхов и понижает бронхиальную секрецию. Под влиянием норадреналина происходит повыше­ние систолического и диастолического давления без изменения сер­дечного ритма, усиливаются сердечные сокращения, снижается секреция желудка и кишки, расслабляется гладкая мускулатура кишки и т. д. Более разнообразным диапазоном действий характеризуется адреналин. Посредством одновременной стимуляции ино-, хроно- и дромотропной функций адреналин повышает сердечный выброс. Адреналин оказывает расширяющее и антиспазматическое действие на мускулатуру бронхов, тормозит моторику пищеварительного тракта, расслабляет стенки органов, но тормозит деятельность сфинктеров, секрецию желез пищеварительного тракта.

В тканях всех видов животных обнаружен серотонин (5-окситриптамин). В мозге он содержится преимущественно в структурах, имеющих отношение к регуляции висцеральных функций, на периферии продуцируется энтерохромаффинными клетками кишки. Серотонин является одним из основных медиаторов метасимпатической части автономной нервной системы, участвующей преимущественно в нейроэффекторной передаче, и выполняет также медиаториую функцию в центральных образованиях. Известно три типа серотонинергических рецепторов - Д, М, Т. Рецепторы Д-типа локализованы в основном в гладких мышцах и блокируются диэтиламидом лизергиновой кислоты. Взаимодействие серотонина с этими рецепторами сопровождается мышечным сокращением. Рецепторы М-типа характерны для большинства автономных ганглиев; блокируются морфином. Связываясь с этими рецепторами, передатчик вызывает ганглиостимулирующий эффект. Рецепторы Т-типа, обнаруженные в сердечной и легочной рефлексогенных зонах, блокируются тиопендолом. Действуя на эти рецепторы, серотонин участвует в осуществлении коронарных и легочных хеморефлексов. Серотонин способен оказывать прямое действие на гладкую мускулатуру. В сосудистой системе оно проявляется в виде констрикторных или дилататорных реакций. При прямом действии сокращается мускулатура бронхов, при рефлекторном - изменяются дыхательный ритм и легочная вентиляция. Особенно чувствительна к серотонину пищеварительная система. На введение серотонина она реагирует начальной спастической реакцией, переходящей в ритмические сокращения с повышенным тонусом и завершающейся торможением активности.

Для многих висцеральных органов характерной является пуринергическая передача, названная так вследствие того, что при стимуляции пресинаптических терминален выделяются аденозин и инозин - пуриновые продукты распада. Медиатором же в этом случае является А Т Ф. Местом его локализации служат пресинаптические терминалы эффекторных нейронов метасимпатической части авто­номной нервной системы.

Выделившийся в синаптическую щель АТФ взаимодействует с пуринорецепторами постсинаптической мембраны двух типов. Пуринорецепторы первого типа более чувствительны к аденозину, второго - к АТФ. Действие медиатора направлено преимущественно на гладкую мускулатуру и проявляется в виде ее релаксации. В механизме кишечной пропульсии пуринергические нейроны являются главной антагонистической тормозной системой по отношению к возбуждающей холинергической системе. Пуринергические нейроны участвуют в осуществлении нисходящего торможения, в механизме рецептивной релаксин желудка, расслабления пищеводного и анального сфинктеров. Сокращения кишечника, возникающие вслед за пуринергически вызванным расслаблением, обеспечивают соответствующий механизм прохождения пищевого комка.

В числе медиаторов может быть гистамин. Он широко распространен в различных органах и тканях, особенно в пищеварительном тракте, легких, коже. Среди структур автономной нервной системы наибольшее количество гистамина содержится в постганглионарных симпатических волокнах. На основании ответных реакций в некоторых тканях обнаружены и специфические гистаминовые (Н-рецепторы) рецепторы: Н1- и Н2-рецепторы. Классическим действием гистамина является повышение капиллярной проницаемости и сокращение гладкой мускулатуры. В свободном состоянии гистамин снижает кровяное давление, уменьшает частоту сердечных сокращений, стимулирует симпатические ганглии.

На межнейронную передачу возбуждения в ганглиях автономной нервной системы тормозное влияние оказывает ГАМК. Как медиатор она может принимать участие в возникновении пресинаптического торможения.

Большие концентрации различных пептидов, особенно субстанции Р, в тканях пищеварительного тракта, гипоталамуса, задних корешков спинного мозга, а также эффекты стимуляции последних и другие показатели послужили основанием считать суб­станцию Р медиатором чувствительных нервных клеток.

Помимо классических медиаторов и «кандидатов» в медиаторы, в регуляции деятельности исполнительных органов участвует еще большое число биологически активных веществ - местных гормонов. Они регулируют тонус, оказывают корригирующее влияние на деятельность автономной нервной системы, им принадлежит существенная роль в координации нейрогуморальной передачи, в механизмах выделения и действия медиаторов.

В комплексе активных факторов видное место занимают простагландины, которых много содержится в волокнах блуждающего нерва. Отсюда они выделяются спонтанно либо под влиянием стимуляции. Существует несколько классов простагландинов: Е, G, А, В. Их основное действие - возбуждение гладких мышц, угнетение желудочной секреции, релаксация мускулатуры бронхов. На сер­дечно-сосудистую систему они оказывают разнонаправленное дей­ствие: простагландины класса А и Е вызывают вазодилатацию и гипотензию, класса G - вазоконстрикцию и гипертензию.

Синапсы ВНС имеют в целом такое же строение, что и центральные. Однако отмечается значительное разнообразие хеморецепторов постсинаптических мембран. Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами на постсинаптической мембране которых расположены никотинчувствительные холинорецепторы. Постганглионарные холинергические волокна образуют на клетках исполнительных органов (желез, ГМК органов пищеварения, сосудов и т.д.) М-холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор-атропин). И в тех и других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза.

Постганглионарные симпатические волокна образуют 2 типа адренергических синапсов на эффекторах – a-адренергические и b-адренергические. Постсинаптическая мембрана первых содержит a1-и a2 – адренорецепторы. При воздействии НА на a1-адренорецепторы происходит сужение артерий и артериол внутренних органов и кожи, сокращение мышц матки, сфинктеров ЖКТ, но одновременно расслабление других гладких мышц пищеварительного канала. Постсинаптические b-адренорецепторы также делятся на b1 – и b2 – типы. b1-адренорецепторы расположены в клетках сердечной мышцы. При действии на них НА повышается возбудимость, проводимость и сократимость кардиомиоцитов. Активация b2-адренорецепторов приводит к расширению сосудов легких, сердца и скелетных мышц, расслаблению гладких мышц бронхов, мочевого пузыря, торможению моторики органов пищеварения.

Кроме того, обнаружены постганглионарные волокна, которые образуют на клетках внутренних органов гистаминергические, серотонинергические, пуринергические (АТФ) синапсы.

2. учение Павлова о 1 и 2 сигнальной системах .

Сигнальная система - система условно- и безусловнорефлекторных связей высшей нервной системы животных (включая человека) и окружающего мира. Различаютпервую и вторую сигнальные системы.

Термин введен академиком И. П. Павловым.

Первая сигнальная система развита практически у всех животных, тогда как вторая система присутствует только у человека и, возможно, у некоторых китообразных. Это связано с тем, что только человек способен формировать отвлечённый от обстоятельств образ. После произнесения слова «лимон» человек может представить, какой он кислый и как обычно морщатся, когда едят его, то есть произнесение слова вызывает в памяти образ (срабатывает вторая сигнальная система); если при этом началось повышенное отделение слюны, то это работа первой сигнальной системы.

Является предметом изучения физиологии высшей нервной деятельности человека.

Вторая сигнальная система - специальный тип высшей нервной деятельности человека, система «сигналов сигналов», идущих от общей (но не одинаковой) с животными первой сигнальной системы - ощущений, представлений, относящихся к окружающему миру. Речь, как вторая сигнальная система, как семиотическая система значимостей - это «идущие в кору от речевых органов есть вторые сигналы, сигналы сигналов. Они представляют собой отвлечение от действительности и допускают обобщение, что и составляет наше личное, специально человеческое, высшее мышление, создающее сперва общечеловеческий эмпиризм, а, наконец, и науку - орудие высшей ориентировки человека в окружающем мире и в самом себе». И. П. Павлов (1932).

Мозг животного отвечает лишь на непосредственные зрительные, звуковые и другие раздражения или их следы; возникающие ощущения составляют первую сигнальную систему действительности.

В процессе эволюции животного мира на этапе становления и начального развития вида Homo sapiens произошло качественное видоизменение системы сигнализации, обеспечивающее активное и коллективное адаптивное приспособительное поведение, создавшее многообразные, принятые в группе системы сигнализации и языки: слово, по выражению И. П. Павлова, становится «сигналом сигналов». Появление второй сигнальной системы - возникновение речи и языков, сигнальных систем человека с сородичами, где условные (произвольные) сигналы индивида приобретают определенные, принятые группой значения и значимости, преобразуются в знаки языка в прямом смысле этого слова - это один из важнейших результатов многомиллионнолетней эволюции социальной жизни рода Homo, передающиеся через речевую деятельность из поколения в поколение.

В изучении В. с. с. вначале преобладало накопление фактов, характеризующих значение обобщающей функции словесных сигналов, а затем - вскрытие нервных механизмов действия слова. Установлено, что процесс обобщения словом развивается как результат выработки системы условных связей (см. Условные рефлексы); при этом имеет значение не только количество связей, но и их характер: связи, выработанные во время деятельности ребёнка, облегчают процесс обобщения. При воздействии словесных сигналов наблюдаются стойкие изменения возбудимости, большая сила, частота и длительность электрических разрядов в нервных клетках определённых пунктов коры мозга. Развитие В. с. с. - результат деятельности всей коры больших полушарий; связать этот процесс с функцией какого-то ограниченного отдела мозга невозможно. В исследованиях В.с.с. в лаборатории высшей нейродинамики и психологии высших когнитивных процессов Е. И. Бойко показана плодотворность учения И. П. Павлова о динамических временных связях В.с.с. В развитие идей И. П. Павлова и Е. А. Бойко в школе Е. А. Бойко разработана общая когнитивистская модель целостного рече-мысле-языкового процесса, найдены решения сложнейших теоретических проблем психологии в ее взаимосвязях с лингвистикой, такие как вопросы соотношения языка и речи в процессах речепроизводства и речепонимания; характер связей речи с мыслью, речи с личностью говорящего; особенности развития детской речи и др. Здесь разработаны новые методы анализа публичных выступлений (интент-анализ), позволяющий в известной мере реконструировать «картину мира» говорящего - его целевые и предметные направленности, их динамику, особенности в конфликтной ситуации, в свободных условиях общения, в публичных выступлениях и др.

Существенным резервом для дальнейших исследований остаются проблемы типологии колоссальных индивидуальных различий во взаимосвязях общего и специального типов ВНД, неокортекса и эмоционально-волевой и непроизвольной регуляции деятельности и общения, пока что слабо представленных как в физиологии ВНД, так и в психолингвистических исследованиях и в антропологической лингвистике.

Центральная нервная система человека осуществляет контроль над деятельностью его организма и разделяется на несколько отделов. Головной мозг посылает и получает сигналы из организма и после их обработки имеет информацию о процессах. Нервная система разделяется на вегетативную и соматическую нервную системы.

Отличия вегетативной и соматической нервной системы

Соматическая нервная система регулируется сознанием человека и может управлять деятельностью скелетной мускулатуры. Все компоненты реакции человека на внешние факторы находятся под контролем полушарий мозга. Она обеспечивает сенсорные и моторные реакции человека, контролируя их возбуждение и торможение.

Вегетативная нервная система контролирует периферическую деятельность организма и не контролируется сознанием. Для нее характерны автономность и генерализованность воздействия на организм при полном отсутствии сознания. Эфферентная иннервация внутренних органов позволяет ей контролировать обменные процессы в организме и осуществлять обеспечение трофических процессов скелетной мускулатуры, рецепторов, кожи и внутренних органов.

Строение вегетативной системы

Работа вегетативной нервной системы контролируется гипоталамусом, который находится в центральной нервной системе. Вегетативная нервная система имеет метасегментарное строение. Ее центры находятся в головном, спинном мозге и коре головного мозга. Периферические отделы образованы стволами, ганглиями, сплетениями.

В вегетативной нервной системе различают:

  • Симпатическую. Ее центр расположен в грудопоясничном отделе спинного мозга. Для нее характерны паравертебральные и предвертебральные ганглии ВНС.
  • Парасимпатическую. Ее центры сосредоточены в среднем и продолговатом мозге, крестцовом отделе спинного мозга. в основном интрамуральные.
  • Метасимпатическую. Иннервирует желудочно-кишечный тракт, сосуды, внутренние органы организма.

В состав ее входит:

  1. Ядра нервных центров, расположенных в головном и спинном мозге.
  2. Вегетативные ганглии, которые расположены по периферии.

Рефлекторная дуга автономной нервной системы

Рефлекторная дуга вегетативной нервной системы состоит из трех звеньев:

  • чувствительное или афферентное;
  • вставочное или ассоциативное;
  • эффекторное.

Их взаимодействие осуществляется без участия дополнительных вставочных нейронов, как в рефлекторной дуге центральной нервной системы.

Чувствительное звено

Чувствительное звено расположено в спинномозговом ганглии. Этот ганглий имеет нервные клетки, сформированные группами, и их контроль осуществляется ядрами центрального головного мозга, большими полушариями и их структурами.

Чувствительное звено представлено частично униполярными клетками, которые имеют один приносящий или уносящий аксон, и они принадлежат спинальным или черепно-мозговым узлам. А также узлами блуждающих нервов, имеющих строение, похожее на спинальные клетки. В это звено входят клетки Догеля II типа, которые являются компонентами вегетативных ганглиев.

Вставочное звено

Вставочное звено в вегетативной нервной системе служит для передачи через низшие нервные центры, которыми являются вегетативные ганглии, и осуществляется это через синапсы. Расположено оно в боковых рогах спинного мозга. Нет прямой связи от афферентного звена на преганглионарные нейроны для их связи, существует кратчайший путь от афферентного нейрона до ассоциативного и от него до преганглионарного нейрона. Передача сигналов и от афферентных нейронов в различных центрах осуществляется с различным количеством вставочных нейронов.

Например, в дуге спинального автономного рефлекса между чувствительным и эффекторным звеном существует три синапса, два из которых расположены в а один в вегетативном узле, в котором расположен эфферентный нейрон.

Эфферентное звено

Эфферентное звено представлено эффекторными нейронами, которые расположены в вегетативных узлах. Их аксоны образуют безмиелиновые волокна, которые в составе со смешанными нервными волокнами иннервируют внутренние органы.

Дуги расположены в боковых рогах.

Строение нервного узла

Ганглий - это скопление нервных клеток, которые имеют вид узелковых расширений толщиной около 10 мм. По своему строению вегетативный ганглий сверху покрыт соединительнотканной капсулой, которая образует строму из рыхлой соединительной ткани внутри органов. Мультиполярные нейроны, которые строятся из округлого ядра и крупных ядрышек, состоят из одного эфферентного нейрона и нескольких расходящихся афферентных нейронов. Эти клетки относятся по своему типу к клеткам головного мозга и являются двигательными. Их окружает неплотная оболочка - мантийная глия, которая создает постоянную среду для нервной ткани и обеспечивает полноценное функционирование нервных клеток.

Вегетативный ганглий имеет диффузное расположение нервных клеток и множество отростков, дендритов и аксонов.

Спинномозговой ганглий имеет нервные клетки, которые расположены группами, и их расположение имеет порядок обусловленный.

Вегетативные нервные ганглии разделяются на:

  • Сенсорные нейроны, которые расположены близко к спинному или центральному отделу мозга. Униполярные нейроны, из которых состоит этот ганглий, представляют собой приносящий или уносящий отросток. Они служат для афферентной передачи импульсов, и их нейроны образуют бифуркацию при ветвлении отростков. Эти отростки передают информацию от периферии к центральному афферентному нейрону - это периферический отросток, центральный - от тела нейрона в мозговой центр.
  • состоят из эфферентных нейронов, и в зависимости от их положения их называют паравертебральные, предвертебральные.

Симпатические ганглии

Паравертебральные цепочки ганглиев расположены вдоль позвоночного столба в симпатических стволах, которые идут длинной вереницей от основания черепа до копчика.

Предвертебральные нервные сплетения находятся ближе к внутренним органам, и их локализация сосредоточена перед аортой. Они образуют брюшное сплетение, которое состоит из солнечного, нижне- и верхнебрыжеечного сплетений. Они представлены двигательными адренергическими и тормозящими действие холинергическими нейронами. Также связь между нейронами осуществляется преганглионарными и постганглионарными нейронами, которые используют медиаторы ацетилхолин и норадреналин.

Интрамуральные нервные узлы имеют нейроны трех типов. Их описание было сделано русским ученым Догелем А.С., который, исследуя гистологию нейронов вегетативной нервной системы, выделил такие нейроны, как длинноаксонные эфферентные клетки первого типа, равноотросчатые афферентные клетки второго типа и ассоциативные клетки третьего типа.

Рецепторы ганглиев

Афферентные нейроны выполняют узкоспециализированую функцию, и их роль заключается в восприятии раздражителей. Такими рецепторами являются механорецепторы (реакция на растяжение или давление), фоторецепторы, терморецепторы, хеморецепторы (отвечают за реакции в организме, химические связи), ноцицепторы (реакция организма на болевые раздражители - это повреждение кожи и другие).

В симпатических стволах эти рецепторы по рефлекторной дуге передают в центральную нервную систему информацию, которая служит сигналом о повреждениях или нарушениях в организме, а также нормальной его работе.

Функции ганглиев

Каждый ганглий имеет свое местоположение, кровоснабжение, и его функции определяются этими параметрами. Спинномозговой ганглий, имеющий иннервацию из ядер головного мозга, обеспечивает непосредственную связь процессов в организме через рефлекторную дугу. От этих структурных компонентов спинного мозга иннервируются железы, гладкая мускулатура мышц внутренних органов. Сигналы, поступающие по рефлекторной дуге, идут медленнее, чем в ЦНС, и они полностью регулируются вегетативной системой, также она обладает трофической, сосудодвигательной функцией.

  • 4. Парасимпатический отдел внс, его центры, ганглии, медиаторы, внутриклеточные посредники, характер влияния на органы и ткани; регуляция активности синапсов.
  • 1. Рефлекторный принцип деятельности цнс. Схема дуги соматического спинального рефлекса.
  • 2. Открытие и.М.Сеченовым торможения в цнс. Виды и механизмы центрального торможения.
  • 3. Роль спинного мозга в регуляции тонуса мышц и движений.
  • 4. Симпатический отдел внс. Его центры, ганглии, медиаторы, внутриклеточные посредники, влияния на деятельность внутренних органов, регуляция активности синапсов.
  • 1. Взаимоотношения между рефлексами в цнс. Принцип общего конечного пути.
  • 2. Пресинаптическое торможение в цнс, его механизмы, значение.
  • 3. Роль продолговатого и среднего мозга в регуляции тонуса мышц. Тонические рефлексы мозгового ствола.
  • 4. Надсегментарные центры регуляции вегетативных функций. Гипоталамус как высший подкорковый центр регуляции вегетативной нервной системы.
  • 1. Понятие о нервном центре. Основные свойства нервных центров.
  • 2. Постсинаптическое торможение в цнс, его виды, механизмы, значение.
  • 3. Роль мозжечка в регуляции тонуса мышц и движений.
  • 4. Общий план строения вегетативной нервной системы, её отличия от соматической.
  • 1. Виды центральных нейронов, их основные функции.
  • 2. Явление суммации в нервных центрах. Виды и механизмы суммации.
  • 3. Понятие о контрактильном тонусе. Децеребрационная ригидность, рефлекторный механизм её развития.
  • 4. Синапсы вегетативной нервной системы, их виды, локализация, механизм возбуждения, основные механизмы регуляции деятельности синапсов.
  • 1. Понятие о сегментарных и надсегментарных отделах цнс. Спинальный шок, причины и механизмы его развития.
  • 2. Реципрокная иннервация мышц-антагонистов, её механизмы, значение.
  • 3. Понятие о тонусе мышц. Виды тонуса. Основные принципы его поддержания. Этапы становления тонуса в онтогенезе.
  • 4. Синапсы вегетативной нервной системы, их виды, локализация, механизм возбуждения, основные механизмы регуляции деятельности синапсов.
  • 1. Эфферентная функция центрального нейрона. Место формирования распространяющегося возбуждения, виды импульсной активности нейронов.
  • 2. Принцип доминанты в деятельности цнс. Свойства доминантного очага. Значение доминанты для интегративной деятельности организма.
  • 3. Понятие о пирамидной и экстрапирамидной системах регуляции тонуса мышц и движений.
  • 4. Вегетативные ганглии, их свойства. Понятие о метасимпатической нервной системе и ее медиаторах.
  • 1. Рефлекс как основной принцип деятельности цнс. Основные этапы учения о рефлексе. Обратная афферентация, её значение для организма.
  • 2. Первичное и вторичное торможение в цнс. Понятие о тормозных нейронах и синапсах.
  • 3. Роль базальных ганглиев мозга в регуляции тонуса мышц и движений.
  • 4. Схема дуги спинального вегетативного рефлекса; медиаторы
  • 1. Интегративная деятельность центрального нейрона, её механизмы.
  • 2. Основные принципы и механизмы координационной деятельности цнс.
  • 3. Проприорецепторы, их роль в регуляции тонуса мышц, регуляция активности проприорецепторов.
  • 4. Периферические вегетативные рефлексы, их дуги, значение для регуляции вегетативных функций.
  • 4. Вегетативные ганглии, их свойства. Понятие о метасимпатической нервной системе и ее медиаторах.

    Особенностью периферического звена вегетативной нервной системы является наличие ганглиев, представляющих собой скопление нейронов.

    Вегетативные ганглии играют важную роль в распределении и распространении нервных влияний на органы. Отмечено, что число нервных клеток в ганглиях в несколько раз превышает число преганглионарных волокон.

    В ганглиях наблюдается явление конвергенции. Вместе с этим обнаруживается явление пространственной и временной суммации. У вегетативных ганглиев проявляются те же свойства, что и у соматических нервных центров. Поэтому ганглии вегетативной нервной системы иногда называют нервными центрами, вынесенными на периферию.

    Метасимпатическая (интраорганная) нервная система (МНС) представляет собой комплекс нервных образований – нейронов, тела которых формируют ганглии, и выходящих за пределы ганглия отростков нервных клеток. Эти структуры локализуются в стенке сердца, кишечника и других органов. Число нейронов этой системы превышает таковое в спинном мозгу. МНС не имеет центрального отдела, т. е. относительно автономна; ее функциональный модуль включает водитель ритма, сенсорные клетки, вставочные, тонические и эффекторные нейроны. Эти нервные образования обеспечивают автономию органов и местную регуляцию функций гладких и сердечной мышц, секреторного эпителия, аппарата всасывания и мелких кровеносных сосудов. Роль метасимпатической нервной системы особенно велика в регуляции функций кишечника (выше прямой кишки), где центральные нервные влияния практически отсутст вуют. В синапсах МНС обнаружено около 20 медиаторов и модуляторов, среди них ацетилхолин, холецистокинин, энкефалины, гистамин, серотонин, соматостатин, АТФ, вещество Р, катехоламины. Симпатические и парасимпатические нервы могут образовывать синапсы на метасимпатических нейронах и влиять на их активность.

    Билет №8

    1. Рефлекс как основной принцип деятельности цнс. Основные этапы учения о рефлексе. Обратная афферентация, её значение для организма.

    Рефлекс (Р.) – это закономерная реакция организма на изменения внешней или внутренней среды, протекающая при участии нервной системы в ответ на раздражение рецепторов. Рефлекторная дуга – нервный путь рефлекса – состоит из чувствительного нервного окончания (или рецепторной клетки), чувствительного нервного волокна с ганглием, центральной части (чувствительных, вставочных, эффекторных нейронов разных уровней ЦНС), эфферентного нервного волокна и эффектора.Основоположником учения о рефлексе как реализуемой нервными центрами спинного мозга ответной реакции на раздражение явился французский философ, математик и физиолог Рене Декарт (1648). Он сформулировал два важных положения рефлекторной теории: 1) деятельность организма при внешнем воздействии является отраженной (впоследствии ее стали называть рефлекторной: лат. reflexus – отраженный); 2) ответная реакция на раздражение осуществляется при помощи нервной системы.Термин «рефлекс» впервые применил чешский физиолог, анатом и офтальмолог И. Прохазка, а выражение «рефлекторная дуга» – английский невропатолог и физиолог М. Холл. Новым шагом в развитии учения о рефлексе стала книга И. М. Сеченова «Рефлексы головного мозга» (1863),главной идеей которой явилось утверждение: «Все акты сознательной и бессознательной жизни суть рефлексы». Иными словами, И. М. Сеченов использовал рефлекторный принцип для объяснения механизмов деятельности головного мозга, в том числе процессов мышления. Отсутствие в ряде случаев видимой ответной реакции на действие стимулов ученый объяснил развитием центрального торможения, открытого им годом раньше(1862). Таким образом, рефлексы могут иметь «усеченный конец».И. П. Павлов, не будучи прямым учеником И. М. Сеченова, считал,однако, его своим учителем и высоко оценивал значение книги И. М. Сеченова, назвав ее «гениальным взмахом русской мысли».

    И. П. Павлов более 30 лет своей жизни посвятил изучению высших рефлексов головного мозга, используя для этой цели метод условных рефлексов и, следовательно, объективный подход к изучению функций мозга. Он развил рефлекторную теорию, основанную на трех принципах: 1) детерминизма, т. е. причинной обусловленности различных процессов мозговой деятельности; 2) анализа и синтеза раздражений в высших отделах мозга; 3) приурочения динамики к структуре, т. е. связи функций мозга с определенными его структурами.Современный этап развития учения о рефлексе может быть назван системно-кибернетическим и связан с именами советских физиологовН. А. Бернштейна и П. К. Анохина. Идеи обратной связи были использованы для объяснения механизмов рефлекторной деятельности Н. А. Бернштейном(1947), в результате появился термин «рефлекторное кольцо».

    П. К. Анохин(1949) назвал обратные связи рефлексов «обратной афферентацией» . Источником ее являются рецепторы, локализованные в органе-эффекторе (1) и в органах чувств, принимающих участие в оценке результата рефлекторного акта (2).Так, при исполнении какой-либо мелодии на музыкальном инструменте такими рецепторами могут быть проприорецепторы мышц и сухожилий руки (1), а также рецепторы органа слуха (2). Сигналы обратной афферентации используются для сравнения результата рефлекторного акта с его программой.

    В естественных условиях жизнедеятельности рефлексы обычно объ-

    единены в системы. Причем системообразующим фактором является общий результат, к которому приводит осуществление этой совокупностирефлексов. Так, поддержание оптимальной концентрации кислорода в плазме крови обеспечивается сердечным, дыхательным, двигательным и другими рефлексами, формирующими функциональную рефлекторную систему. Учение о функциональных системах регуляции функций было развито П. К. Анохиным (1949).

    В вегетативной нервной системе различают центральные и периферические отделы. Центральные отделы симпатической нервной системы представлены ядрами боковых рогов тораколюмбального отдела спинного мозга. В парасимпатической нервной системе центральные отделы включают ядра среднего и продолговатого мозга, а также ядра боковых рогов сакрального отдела спинного мозга. Парасимпатические волокна краниобульбарного отдела выходят в составе III-й, VII-й, IX-й и Х-й пар черепных нервов.
    Периферические отделы вегетативной нервной системы образованы нервными стволами, ганглиями и сплетениями.

    Вегетативные рефлекторные дуги начинаются чувствительным нейроном, тело которого лежит в спинномозговом узле (ганглии), как и в соматической рефлекторной дуг. Ассоциативные нейроны находятся в боковых рогах спинного мозга. Здесь нервные импульсы переключаются на промежуточные преганглионарные нейроны, отростки которых покидают центральные ядра и достигают вегетативных ганглиев, где передают импульсы на двигательный нейрон. В связи с этим различают нервные волокна преганглионарные и постганглионарные. Первые из них покидают центральную нервную систему в составе вентральных корешков спинномозговых нервов и черепных нервов. Как в симпатической, так и в парасимпатической системах преганглионарные нервные волокна принадлежат холинергическим нейронам. Аксоны нейронов, расположенных в вегетативных ганглиях, называются постганглионарными. Они не образуют прямых контактов с эффекторными клетками. Их терминальные отделы по своему ходу формируют расширения - варикозности, в составе которых находяся пузырьки медиатора. В области варикозности нет глиальной оболочки и нейромедиатор, выделяясь в окружающую среду, влияет на эффекторные клетки (например, на клетки желез, гладкие миоциты и др.).

    В периферических ганглиях симпатической нервной системы, как правило, находятся адренергические эфферентные нейроны (за исключением нейронов, имеющих синаптические связи с потовыми железами, где симпатические нейроны являются холинергическими). В парасимпатических ганглиях эфферентные нейроны всегда холинергические.

    Ганглии представляют собой скопления мультиполярных нейронов (от нескольких клеток до десятков тысяч). Экстраорганные (симпатические) ганглии имеют хорошо выраженную соединительнотканную капсулу, как продолжение периневрия. Парасимпатические ганглии находятся, как правило, в интрамуральных нервных сплетениях. Ганглии интрамуральных сплетений, как и другие вегетативные узлы, содержат вегетативные нейроны местных рефлекторных дуг. Мультиполярные нейроны диаметром 20-35 мкм расположены диффузно, каждый нейрон окружен глиоцитами ганглия. Кроме того, описаны нейроэндокринные, хеморецепторные, биполярные, а у некоторых позвоночных и униполярные нейроны. В симпатических ганглиях имеются мелкие интенсивно флюоресцирующие клетки (МИФ-клетки) с короткими отростками и большим количеством гранулярных пузырьков в цитоплазме. Они выделяют катехоламины и оказывают тормозящее влияние на передачу импульсов с преганглионарных нервных волокон на эфферентный симпатический нейрон. Эти клетки называют интернейронами.

    Среди крупных мультиполярных нейронов вегетативных ганглиев различают: двигательные (клетки Догеля I-го типа), чувствительные (клетки Догеля II-го типа) и ассоциативные (клетки Догеля III-го типа). Двигательные нейроны имеют короткие дендриты с пластинчатыми расширениями ("рецептивные площадки"). Аксон этих клеток очень длинный, уходит за пределы ганглия в составе постганглионарных тонких безмиелиновых нервных волокон и оканчивается на гладких миоцитах внутренних органов. Клетки I-го типа называют длинноаксонными нейронами. Нейроны II-го типа - равноотростчатые нервные клетки. От их тела отходят 2-4 отростка, среди которых различить аксон трудно. Не разветвляясь, отростки уходят далеко от тела нейрона. Их дендриты имеют чувствительные нервные окончания, а аксон оканчивается на телах двигательных нейронов в соседних ганглиях. Клетки II-го типа являются чувствительными нейронами местных вегетативных рефлекторных дуг. Клетки Догеля III-го типа по форме тела похожи на вегетативные нейроны П-го типа, но их дендриты не выходят за пределы ганглия, а нейрит направляется в другие ганглии. Многие исследователи считают эти клетки разновидностями чувствительных нейронов.

    Таким образом, в периферических вегетативных ганглиях имеются местные рефлекторные дуги, состоящие из чувствительных, двигательных и, возможно, ассоциативных вегетативных нейронов.

    Интрамуральные вегетативные ганглии в стенке пищеварительного тракта отличаются тем, что в их составе, кроме двигательных холинергических нейронов, имеются тормозные нейроны. Они представлены адренергическими и пуринергическими нервными клетками. В последних медиатором является пуриновый нуклеотид. В интрамуральных вегетативных ганглиях встречаются также пептидергические нейроны, выделяющие вазоинтестинальный пептид, соматостатин и ряд других пептидов, с помощью которых осуществляются нейроэндокринная регуляция и модуляция деятельности тканей и органов пищеварительной системы.

    Учебное видео анатомии вегетативной нервной системы (ВНС)

    При проблемах с просмотром скачайте видео со страницы

    Вегетативные ганглии представляют собой скопление многочислен-ных мультиполярных нервных клеток.

    Величина вегетативных ганглиев существенно варьирует. В связи с этим различают крупные, средней величины, мелкие и очень мелкие (микроганглии) ганглии.

    Необходимо отметить, что кроме анатомически обособленных ганглиев, по ходу вегетативных ветвей периферических нервов встречается большое количество нервных клеток, подобных нервным клеткам вегетативного ганглия. Эти нейроны, мигрирующие сюда в ходе эмбриогенеза, локализуются по ходу нервов поодиночке или образуют небольшие группы – микроганглии.

    Вегетативный ганглий с поверхности покрыт фиброзной соединительнотканной капсулой, от которой внутрь отходят многочисленные прослойки соединительной ткани, образующей строму узла. По этим прослойкам в узел проходят кровеносные сосуды, питающие его и образующие в нем капиллярную сеть. В капсуле и строме узла часто вблизи кровеносных сосудов встречаются рецепторы – диффузные, кустиковидные или инкапсулированные.

    Мультиполярные нервные клетки вегетативного ганглия впервые были описаны А.С. Догелем. При этом Догель выделил 3 типа нервных клеток вегетативного ганглия, которые получили названияклеток Догеля I , II, III типа . Морфофункциональные характеристики клеток Догеля существенно разнятся.

    Клетки Догеля I типа по функциональному значению являются эффекторными (двигательными) нейронами. Это более или менее крупные нервные клетки, с несколько короткими дендритами, не выходящими за пределы данного ганглия. Аксон этих клеток более длинный выходит за пределы ганглия и направляется к рабочему аппарату – гладкомышечным клеткам, железистым клеткам, образуя на них двигательные (или соответственно секреторные) нервные окончания. Аксоны и дендриты клеток ДогеляIтипа являются безмякотными. Дендриты часто образуют пластинчатые расширения, на которых (как и на теле клетки) располагаются синаптические окончания, образующиеся разветвлениями преганглионарного нервного волокна.

    Тела нейронов в вегетативном ганглии, в отличие от спиномозгового ганглия, располагаются беспорядочно по всему узлу и более рыхло (т.е. более редко). На препаратах, окрашенных гематоксилином или другими общегистологическими красителями, отростки нервных клеток остаются не выявленными, а клетки имеют такую же округлую безотросчатую форму, как в спиномозговых узлах. Тело каждой нервной клетки (как и в спинальном ганглии) окружено слоем уплощенных элементов олигодендроглии – слоем сателлитов.

    К наруже от слоя сателлитов имеется еще тонкая соединительно-тканная капсула. Клетки Догеля Iтипа являются основной клеточной формой вегетативных ганглиев.

    Клетки Догеля II типа – это также мультиполярные нервные клетки, с несколькими длинными дендритами и нейритом, уходящим за пределы данного ганглия в соседние ганглии. Аксон с поверхности покрыт миелином. Дендриты этих клеток начинаются рецепторными аппаратами в гладких мышцах. С функциональной точки зрения клетки ДогеляIIтипа являются чувствительными. В отличие от чувствительных псевдоуниполярных нервных клеток спиномозгового узла клетки ДогеляIIтипа, по-видимому, образуют рецепторное (афферентное) звено местных рефлекторных дуг, замыкаемых без захода нервного импульса в центральную нервную систему.

    Клетки Догеля III типа представляют собой местные ассоциативные (вставочные) элементы, соединяющие своими отростками несколько клетокIиIIтипа. Их дендриты короткие, но более длинные, чем у клетокIтипа, не выходят за пределы данного ганглия, а образуют корзинчатые разветвления, оплетающие тела других клеток данного ганглия. Нейрит клетки ДогеляIIIтипа идет в другой ганглий и там вступает в синаптическую связь с клеткамиIтипа. Следовательно, клеткиIIIтипа входят в качестве ассоциативного звена в местные рефлекторные дуги.

    Нельзя не отметить, существует такая точка зрения, что клетки Догеля IIIтипа имеют рецепторную или эффекторную природу.

    Соотношение численности клеток Iи II типов Догеля в различных вегетитивных ганглиях неодинаково. Парасимпатические ганглии, в отличие от симпатических ганглиев, характеризуются преобладанием клеток с короткими внутрикапсулярными дендритами, отсутствием или малым количеством пигмента в клетках. Кроме того в парасимпатических ганглиях, как правило, тела лежат значительно компактнее, чем в симпатических ганглиях. Кроме того, в симпатических ганглиях имеютсяМИФ-клетки (мелкие клетки с интенсивной флюоросценцией).

    Через вегетативный ганглий проходят проводящие пути трех видов: центростремительные, центробежные и периферические (местные) рефлекторные.

    Центростремительные пути образованы чувствительными отростками псевдоуниполярных клеток спинального ганглия, начинающихся рецепторами в иннервируемых тканях, а также внутри ганглия. Эти волокна проходят транзитом через вегетативные ганглии.

    Центробежные пути представлены преганглионарными волокнами, которые многократно ветвятся в вегетативном узле и образуют синапсы на многих клеточных телах эффекторных нейронов. Например, в верхнем шейном узле соотношение числа преганглионарных волокон, вступивших в него, к постганглионарным равно 1:32. Это явление приводит, при возбуждении преганглионарных волокон, к резкому расширению области возбуждения (геперализация эффектора). Благодаря этому, сравнительно небольшое количество центральных вегетативных нейронов обеспечивает нервными импульсами все органы и ткани. Итак, например, при раздражении у животного преганглионарных симпатических волокон, проходящих через передние корешки IYгрудного сегмента, может наблюдаться сужение сосудов кожи головы, шеи, расширение коронарных сосудов, сужение сосудов кожных покровов передней конечности, сосудов почки и селезенки.

    Продолжение этих путей составляют постганглионарные волокна, достигающие иннервируемых тканей.

    Периферические (местные) рефлекторные пути начинаются в тканях разветвлениями отростков собственных чувствительных нейронов вегетативных ганглиев (т.е. клетками IIтипа Догеля). Нейриты же этих кле-ток заканчиваются на клетках ДогеляIтипа, чьи постганглионарные волокна входят в состав центробежных путей.

    Морфологическим субстратом рефлекторной деятельности вегетативной нервной системы является рефлекторная дуга. Для рефлектор-ной дуги вегетативной нервной системы характерны все три звена – рецепторное (афферентное), вегетативное (ассоциативное) и эффекторное (двигательное), но локализация их иная чем в соматической.

    Интересно отметить, что многие морфологи и физиологи указывают как на отличительный признак вегетативной нервной системы, отсутствие в ее составе собственного афферентного (рецепторного) звена, т.е. они считают, что чувствительная иннервация внутренних органов, сосудов и т.д. осуществляется дендритами псевдоуниполярных клеток спинального ганглия, т.е. соматической нервной системы.

    Правильнее считать, что спиномозговые узлы содержат нейроны, иннервирующие скелетную мускулатуру, кожу (т.е. нейроны соматической нервной системы), так и нейроны, иннервирующие все внутренние органы, сосуды (т.е. вегетативные нейроны).

    Одним словом, аффекторное звено, как и в соматической (анимальной) нервной системе, в вегетативной нервной системе представлено клеткой, лежащей в спиномозговом узле.

    Тело нейрона ассоциативного звена располагается, в отличие от соматической рефлекторной нервной дуги, не в области заднего рога, а в боковых рогах серого вещества, и аксон этих клеток выходит за пределы мозга и оканчивается в одном из вегетативных ганглиев.

    Наконец, наибольшие отличия между анимальной и вегетативной рефлекторными дугами наблюдаются в эфферентном звене. Так, тело эфферентного нейрона в соматической нервной системе находится в сером веществе спинального или головного ганглия и лишь его аксон идет на периферию в составе того или иного черепно или спиномозгового нерва. В вегетативной системе тела эффекторных нейронов находятся на периферии: они либо разбросаны по ходу некоторых нервов, либо образуют скопления – вегетативные ганглии.

    Таким образом, для вегетативной нервной системы, в силу такой локализации эффекторных нейронов, характерно наличие, по крайней мере, одного перерыва эфферентного пути, который проходит в вегетативном ганглии, т.е. здесь нейриты вставочных нейронов, контактируют с нейронами эффекторными, образуя на их телах и дендриты синапсы. Следовательно, вегетативные ганглии представляют собой периферические нервные центры. Этим они принципиально отличаются от спинальных ганглиев, которые не являются нервными центрами, т.к. в них нет синапсов и не происходит переключения нервных импульсов.

    Таким образом, спиномозговые узлы являются смешанными образованиями, анимально-вегетативными.

    Особенностью рефлекторной дуги симпатической нервной системы является наличие коротких преганглионарных волокон и очень длинных постганглионарных волокон.

    Особенностью рефлекторной дуги парасимпатической нервной системы является, напротив, наличие очень длинных преганглионарных и очень коротких постганглионарных волокон.

    Основные функциональные различия симпатической и парасимпатической систем заключаются в следующем. Медиатором, т.е. веществом, образующимся в области синапсов и осуществляющим химическую передачу импульса, в симпатических нервных окончаниях является симпатин (вещество, тождественное гормону мозгового вещества надпочечника – ноадреналину).

    Медиатором в парасимпатических нервных окончаниях является «вещество вагуса» (вещество, тождественное ацетилхолину). Впрочем эта разница касается только постганглионарных волокон. Синапсы, образованные преганглионарными волокнами и в симпатической и парасимпатической системах холинергичны, т.е. в качестве медиатора они образуют холиноподобное вещество.

    Названные химические вещества – медиаторы и сами по себе, даже без раздражения вегетативных нервных волокон, вызывают в рабочих органах эффекты, аналогичные действию соответствующих вегетативных нервных волокон. Так, ноадреналин при введении в кровь ускоряет сердцебиение, но замедляет перистальтику кишечного тракта, а ацетилхолин – наоборот. Ноадреналин вызывает сужение, а ацетилхолин – расширение просвета сосудов.

    Холинергичны и синапсы, образуемые волокнами соматической нервной системы.

    Деятельность вегетативной нервной системы находится под контролем коры больших полушарий, а также подкорковых вегетативных центров полосатого тела и, наконец, вегетативных центров промежуточного мозга (ядро гипоталамуса).

    В заключении необходимо отметить, что учение о вегетативной нервной системе большой вклад внесли и советские ученые Б.И. Лаврентьев, А.А. Заварзин, Д.И. Голуб, удостоенные государственных премий.

    Литература:

        Жаботинский Ю.М. Нормальная и патологическая морфология вегетативных ганглиев. М.,1953

        Заварзин А.А. Очерк по эволюционной гистологии нервной системы. М-Л,1941

        А.Г. Кнорре, И.Д.Лев. Вегетативная нервная система. Л.,1977,с.120

        Колосов Н.Г. Иннервация пищеварительного тракта человека. М-Л,1962

        Колосов Н.Г. Вегетативный узел. Л.,1972

        Колосов Н.Г., Хабарова А.Л. Структурная организация вегетативных ганглиев. Л.,Наука, 1978.-72с.

        Кочетков А.Г., Кузнецов Б.Г., Коновалова Н.В. Вегетативная нервная система. Н-Новгород, 1993.-92с.

        Мельман Е.П. Функциональная морфология иннервация органов пищеварения. М.,1970

        Ярыгин Н.Е. и Ярыгин В.Н. Патологические и приспособительные изменения нейрона. М.,1973.