Истребители. Пятое поколение. Сверхманёвренность и "Топ Ган". Маневренные характеристики Отклоняемый вектор тяги

Недавно в сети появился доклад американского летчика-испытателя, участвующего в тестировании перспективного истребителя F-35 Lightning II. Согласно документу, разрабатываемый самолет в «собачьем бою» значительно уступает более старому F-16 Fighting Falcon. Впрочем, в министерстве обороны США уже заявили, что самолетные бои на ближних дистанциях давно уже остались в прошлом. Сегодня, мол, побеждает тот, кто способен первым увидеть и поразить противника, а это достигается преимущественно при помощи технологии малозаметности, ракет и радаров, а не мастерства пилота.

По данным исследования американского аналитического центра CSBA, последнее масштабное участие истребителей ВВС США в «собачьих боях» было зафиксировано во время войны во Вьетнаме. Кроме того, использование авиационных пушек, основного оружия самолетной дуэли на ближних дистанциях, в воздушных боях американскими летчиками снизилось с 60 процентов случаев в 1960-х годах до пяти процентов в 1985 году. С 1990 года основные потери самолетов в воздушных боях ВВС США несли не от пушечного огня, а от ракет противника. Сегодня авиапушки в подавляющем большинстве случаем применяются только против наземных целей.

F-35 Lightning II и F-16 Fighting Falcon между ними

Фотография: U.S. Air Force

«Собачий бой» это противостояние самолетов на малых дистанциях и в условиях, когда противники видят друг друга. Этот вид боя появился еще во время Первой мировой войны, когда основным вооружением боевых самолетов были пулеметы, эффективные только на ближнем расстоянии. Во Вторую мировую войну ближние маневренные бои велись всеми участниками конфликта. После 1992 года «собачьи бои» стали большой редкостью - техническое развитие самолетов, получивших радиолокационные станции и ракеты большой дальности позволило летчикам вести огонь по противнику с большого расстояния, иногда даже за пределами прямой видимости.

Испытательный ближний маневренный бой между истребителем F-35A с бортовым номером «AF-02» и F-16D Block 40 в январе 2015 года. В ходе боя на высотах от трех до девяти тысяч метров стороны опробовали как наступательные, так и оборонительные виды тактики. Во всех случаях самолеты были сравнительно близко друг от друга, на дистанции, где использование ракетного вооружения практически неэффективно, и большое значение приобретает возможность зайти противнику в заднюю полусферу, чтобы поразить его пушечным огнем. Почти во всех ситуациях маневренность нового истребителя оказалась хуже, чем у F-16.


F-35A Lightning II

Фотография: JSF


По данным летчика-испытателя, участвовавшего в учебной дуэли, F-35A обладает недостаточной скоростью изменения тангажа (подъема или опускания носа самолета). Летные качества F-35A при значительных углах атаки в 20-26 градусов ставили пилота в неблагоприятные условия относительно F-16D. Плохая горизонтальная маневренность вела к тому, что поймать F-16D в прицел своей пушки пилоту F-35A не удавалось - пока он прицеливался, противник успевал совершить маневр уклонения. При этом, когда пилот Fighting Falcon пытался атаковать F-35A, ему это почти всегда удавалось.

Практическим путем испытателю удалось установить, что при одном маневре его самолет все же превосходил F-16D. Для выполнения этого маневра необходимо во время установившегося полета на больших углах атаки переложить управление в сторону и удерживать его в этом положение относительно долгое время. В этом случае F-35A оказывается способен резко сменить курс и уйти из прицела противника. Однако самолет при этом теряет скорость и уже не способен быстро восстановить ее. Летчик рекомендовал маневр для выхода из близкого боя. В целом же летчик-испытатель заявил, что истребитель Lightning II плохо подходит для «собачьего боя».


F-35A Lightning II и F-16 Fighting Falcon

Фотография: U.S. Air Force

Вскоре после публикации доклада о «собачьем бое» объединенное управление проектом разработки истребителя F-35 заявило, что этот самолет разрабатывается в первую очередь для ведения воздушного боя на большом расстоянии. Кроме того, во время испытательного «собачьего боя» участвовал прототип с номером «AF-02», а это - один из первых летных образцов, не укомплектованных ни радиопглощающим покрытием, ни полным набором сенсоров, ни вооружением, которые применяются на серийных F-35A.

Американские военные с тех пор как стали активно развиваться технологии малозаметности считают «собачий бой» пережитком войны. Поэтому в США практически не разрабатываются ракеты класса «воздух-воздух» малой дальности, а пушечное вооружение устанавливается на истребители «на всякий случай». И если версия F-35A для ВВС США еще имеет собственную пушку (да и та будет использоваться для поддержки с воздуха, когда Lightning II заменят устаревшие штурмовики A-10 Thunderbolt II), то версии F-35B и F-35C (для Морской пехоты и ВМС США) соответственно ее лишены. Последние два смогут использовать авиапушку только в подвесном контейнере.


A-10 Thunderbolt II

Фотография: U.S. Air Force


По словам директора управления по интеграции систем F-35 генерал-майора Джефри Хэрриджена, пока еще слишком рано делать окончательные выводы о маневренности перспективного боевого самолета. Разработка, войсковые и доводочные испытания F-35 еще не завершены, и некоторые характеристики могут измениться. «F-35 спроектирован таким образом, чтобы его маневренность соответствовала современным тактическим истребителям. Однако конструкция самолета оптимизирована с точки зрения малозаметности. Благодаря этому истребитель сможет действовать в условиях, в которых F-16 просто не выживут», - рассказал Хэрриджен.

Вероятно, генерал-майор имел в виду так называемые зоны с ограничением и воспрещением доступа и маневра (anti-access/area denied environment, зоны A2/AD). По оценке Пентагона, таких зон в мире с каждым годом становится все больше. В понятие A2/AD американские военные закладывают не только противодействие систем противовоздушной обороны и авиации противника, не только постоянное спутниковое наблюдение, но и условия, при которых поставка запчастей и провизии значительно затруднена или вовсе невозможна. К условиям A2/AD также относится и отсутствие американского политического и финансового влияния в регионе.


AV-8B Harrier II

Фотография: U.S. Navy

После широкого применения в перспективных самолетах технологий малозаметности, так называемого «стелса», способность летательных аппаратов выживать в зонах A2/AD стало для Пентагона манией. Все перспективные американские самолеты и беспилотные летательные аппараты разрабатывают таким образом, чтобы они могли обнаруживать противника на как можно большем расстоянии и поражать его ракетами, оставаясь незаметными. Эти требованиям должны соответствовать перспективный стратегический бомбардировщик LRS-B и палубный истребитель F/A-XX.

Говоря о маневренности F-35 не следует забывать и том, что этот истребитель разрабатывается в качестве единого боевого самолета сразу для трех родов войск - ВВС, Морской пехоты и ВМС США. В американских войсках перспективный Lightning II заменит истребители F/A-18E/F Super Hornet, F-16, штурмовики A-10 и AV-8B Harrier II. То есть Lightning II после принятия на вооружение станет по настоящему многофункциональным самолетом. На практике это означает, что истребитель сможет решать широкий круг задач (от атаки на наземные цели до борьбы с самолетами противника в воздухе), но будет делать это хуже, чем специализированные боевые летательные аппараты.


Фотография: Wikimedia Commons


Защищая F-35 после доклада летчика-испытателя американские военные также объявили, что ранее проводилось компьютерное моделирование ближнего воздушного боя с участием Lightning II и F-16. В симулированном воздушном бою приняли участие четыре перспективных истребителя и такое же количество Fighting Falcon. И F-35 в этом бою выиграли. В данном случае использовались наземные тренажеры F-35 и специальное программное обеспечение Управления ВВС США по моделированию и симуляции. По данным военных, Lightning II показал свое превосходство благодаря новейшим сенсорам, вооружениям и технологии малозаметности.

К настоящему времени официально известно только о трех случаях, когда моделировались воздушные бои с участием F-35. Самое первое было проведено в 2008 году на авиабазе «Хикам» на Гавайях. В нем российские истребители Су-35 бились против американских F-22 Raptor, F/A-18E/F и F-35A. И хотя американцы выиграли симулированный бой, они потеряли все Lightning II. За боем наблюдали представители ВВС и военной разведки Австралии, которая планировала купить некоторое количество F-35. Позднее некоторые из них признались, что в симулированном бою «F-35 был беспощадно избит истребителем Су-35».

F/A-18F Super Hornet

Фотография: U.S. Navy


Третьим моделированием воздушного боя, о котором официально стало известно, является воздушный бой четырех F-35A против четырех F-16. Подробности об этой симуляции, кроме того, что Lightning II победили, не известны. Компьютерное моделирование как инструмент оценки эффективности вооружений и военной техники, очень часто используется американцами. Это дешевый способ получить приблизительное представления о возможностях разрабатываемой техники, которые по разным причинам невозможно проверить в реальном бою. При этом нужно понимать, что реальной картины симуляция не показывает.

Компьютерная программа способна учитывать тысячи различных факторов, включая аэродинамику самолетов, особенности их вооружения, возможности маневрирования, тактические правила ведения боя. Но она не может и вряд ли когда-нибудь сможет учитывать человеческий фактор - эмоциальное состояние летчика, ход его мыслей, мастерство. А они тоже могут влиять на исход воздушного боя. Как себя на самом деле покажет F-35 в воздушных сражениях будущего, сказать пока сложно. Но Пентагон уже сегодня уверяет, что Lightning II будет надежной и эффективной машиной. Когда разработка всех систем для него будет завершена.

Василий Сычев

Маневренность самолета - это его свойство изменять за определенный временной отрезок собственный положение в пространстве (направление, скорость и высоту полета), т. е. выполнять эволюции, маневрировать в воздухе. Маневренные особенности самолета зависят от последовательности факторов: аэродинамические и прочностные ограничения, располагаемая тяга двигателей, полетный вес и др. Эксплуатационная маневренность самолета определяется его управляемостью, приемистостью двигателей, быстротой включения реверса тяги, быстротой отклонения закрылков, щитков, спойлеров.

Управляемость самолета - это его свойство изменять режим

полета по воле пилота (при отклонении им рычагов управления). Наряду с этим перемещения рычагов управления должны быть несложными и сопровождаться маленькими, но прекрасно чувствуемыми на них упрочнениями.

Устойчивость самолета - свойство его самостоятельно, без вмешательства пилота, сохранять заданный режим полета и возвращаться к исходному равновесию по окончании прекращения действия внешних возмущений. В противном случае говоря, устойчивость, по определению Н. Е. Жуковского, возможно осознавать как «прочность» равновесия.

Самолет должен быть устойчив довольно всех трех осей. Хорошие характеристики устойчивости нужны для лучшей управляемости самолета. У устойчивого самолета более простые перемещения рычагами управления и меньше неспециализированная затрата нервной и мускульной энергии пилота на управление.

Для удобства рассмотрения устойчивость условно подразделяют на статическую устойчивость - свойство самолета обнаруживать тенденцию к восстановлению нарушенного равновесия в начальный момент времени и динамическую устойчивость - свойство самолета без вмешательства пилота восстанавливать исходный режим полета через некое время по окончании прекращения действия возмущения.

Наличие статической устойчивости есть нужным, но недостаточным условием динамической устойчивости самолета.

Продольную статическую устойчивость разделяют на устойчивость по перегрузке - свойство самолета самостоятельно, без вмешательства пилота, сохранять перегрузку исходного режима полета и на устойчивость по скорости - свойство самолета самостоятельно, без вмешательства пилота, сохранять скорость исходного режима полета.

При полета со скольжением у самолета появляются путевой (относительно оси О у) и поперечный (относительно оси Олс) статические моменты. У самолета, владеющего путевой (флюгерной) устойчивостью, появляющийся при скольжении момент пытается стереть с лица земли скольжение. У поперечно устойчивого самолета появляющийся при скольжении момент пытается накренить самолет в сторону, обратную скольжению.

Накренение самолета приводит к развороту в сторону крена и содействует, так, уничтожению скольжения.

Путевая устойчивость самолета обеспечивается по большей части вертикальным оперением. Чем больше площадь всех вертикальных поверхностей (киль, форкиль, шайбы, гребни и др.) и чем больше плечо этих поверхностей до центра тяжести самолета, тем лучше путевая устойчивость самолета.

Поперечная устойчивость самолета обеспечивается углом поперечного V крыла и высотой киля. Чем больше угол поперечного V крыла и чем выше киль, тем лучше поперечная устойчивость самолета. Повышение стреловидности крыла кроме этого содействует увеличению поперечной устойчивости самолета.

У самолетов со стреловидными крыльями поперечная устойчивость в значительной степени зависит от угла атаки, возрастая по мере его повышения.

Самолет с громадной степенью поперечной устойчивости отвечает энергичным кренением на происхождение скольжения. При излишней поперечной устойчивости значительно усложняется пилотирование при полета в болтанку и при происхождении несимметричной тяги.

Но пилот по большей части оценивает не проявление поперечной и путевой устойчивости в отдельности, а их совокупность. Одновременное проявление путевой и поперечной устойчивости рассматривается как боковая устойчивость самолета. Боковая устойчивость предусматривает определенную зависимость между путевой и поперечной устойчивостью.

При громадных значениях величины у, поведение самолета оценивается как неудовлетворительное, т. е. происхождение скольжения сопровождается резким кренением и, как следствие, разбалтыванием самолета. Самолет попеременно кренится и рыскает из стороны в сторону.

Хорда условного прямоугольного крыла, имеющего при равных углах атаки однообразные с крылом разглядываемого самолета величины полной аэродинамической продольного момента и силы, именуется средней аэродинамической хордой (САХ). положение и Величина САХ для каждого самолета указаны в техническом описании.

Так как самолет в воздухе вращается около центра тяжести, то положение центра тяжести (центровка) оказывает значительное влияние

Выход центровки за установленный для данного типа самолета диапазон недопустим. Чрезмерное смещение центровки назад (за установленные ограничения) позовёт сперва ухудшение устойчивости самолета по перегрузке, а после этого может привести к появлению неустойчивости. Но и излишне передняя центровка затрудняет управляемость самолета и может привести к «дефициту руля» при посадке.

Центр тяжести. Самолет

Техника и тактика неразрывно взаимосвязаны. Развитие авиационной техники неизбежно ведет к развитию тактики воздушного боя, а развитие тактики стимулирует создание новых самолетов. Об этом свидетельствует история развития воздушного боя со времен Первой мировой войны и до наших дней.

В воздушном бою с использованием ракет "воздух-воздух" большой и средней дальности (РБД и РСД) истребителю вовсе не нужна высокая маневренность, даже если атакуемый выполняет энергичные оборонительные маневры.

Опыт локальных войн и военных конфликтов второй половины XX столетия показал, что в воздушных боях возможно возникновение таких ситуаций, в которых использование РБД и РСД невозможно. Тогда становится неизбежным ближний маневренный воздушный бой с использованием ракет малой дальности (РМД) и стрелково-пушечного вооружения.

В процессе длительного маневрирования, когда действует правило "кто кого", оружием становится и аэродинамика самолета. Так, если раньше по соображениям безопасности категорически запрещалось выходить на срыв- ные режимы, то в вооруженном конфликте между Сирией и Израилем в 1973 г. летчики часто прибегали к резким маневрам самолетов, порой на грани срыва. Эти воздушные бои показали необходимость снятия ограничений по выходу на срывные режимы полета. Более того, встал вопрос: как сделать управляемым полет на этих режимах? В середине 1970-х годов широкое распространение получила концепция создания "сверхманевренного" самолета.

Маневренностью самолета называется его способность изменять свое положение в пространстве путем изменения вектора скорости по величине или направлению, либо одновременно и по величине и по направлению. Чем быстрее изменяется вектор скорости самолета, тем выше его маневренность. Для характеристики маневренности самолета используются как частные, так и общие показатели маневренности.

К частным показателям относятся угловые скорости и радиусы кривизны элементов маневров (фигур пилотажа), время выполнения маневра (фигуры). Но для характеристики маневренности самолетов классической аэродинамической схемы более приемлемы общие показатели маневренности – перегрузки. Максимальные маневренные возможности таких самолетов определяются располагаемой нормальной перегрузкой, которая, в свою очередь, зависит от высоты и скорости полета. При превышении этой перегрузки возникает опасность сваливания самолета с последующим переходом в штопор. Располагаемой нормальной перегрузке соответствуют максимальные угловые скорости и минимальные радиусы траекторий в плоскости маневра.

Опыт локальных войн показал, что маневрирование даже с выходом на срывные режимы полета не всегда давало желаемый результат. Причина – истребители третьего поколения уже вобрали все резервы "поворотливости". Стало ясно, что для победы в маневренном воздушном бою истребитель должен не только обладать большой "поворотливостью", но и не сваливаться на закритических углах атаки. Возникла проблема обеспечения не только устойчивости, но и управляемости самолета на этих углах атаки. Появился новый термин – "сверхманевренность", под которым понимался управляемый полет на закритических углах атаки.

Такое толкование "сверхманевренности" недостаточно полно отражает существо дела, поскольку не учитывает соотношения с маневренностью самолета на докритических углах атаки. Сверхманевренным можно назвать такой самолет, у которого на режимах полета одинаковых с обычным маневренным самолетом скорости изменения траекторных углов (углов пути? и наклона траектории Q), т.е. траекторные угловые скорости ("поворотливость") больше, чем у последнего, и который способен выполнять управляемый полет на закритических углах атаки.









Совместные работы ОКБ А.И.Микояна, ОКБ П.О.Сухого с ЦАГИ в этом направлении начались еще в 1969 году. Были открыты новые возможности значительного увеличения несущих свойств самолета при достаточно малом приращении сопротивления. Это новое направление, разработанное в ЦАГИ, основывалось на рациональном использовании специально индуцированных вихрей на верхней поверхности крыла, которые генерировались заостренными наплывами в его корневой части. Важным фактором явилось применение автоматически отклоняемых носков крыла, угол отклонения которых постоянно увеличивался с возрастанием угла атаки и, наконец, появилась "уплощенная" форма фюзеляжа, что увеличивало его вклад в подъемную силу (до 40%) и уменьшало дестабилизирующее влияние на путевую устойчивость. Аэродинамическая компоновка носила интегральный характер в сочетании крыла с фюзеляжем посредством зализов большого диаметра. Иллюстрацией к сказанному служит рисунок, на котором сопоставлены схемы самолетов МиГ-29 и Су-27.

В октябре 1977 г летчик-испытатель Федотов А.В. совершил первый полет на опытном маневренном истребителе, будущем МиГ-29. На вооружение МиГ- 29 стал поступать в 1983 г. На международной авиационной выставке в Фарнборо (Англия) в сентябре 1988 г. летчик-испытатель А.Н. Квочур впервые продемонстрировал на этом самолете фигуру "колокол" (взмывание вверх с торможением и последующим движением на хвост).

Большие успехи в создании сверхманевренного самолета были достигнуты в ОКБ П.О.Сухого, в котором создавался самолет Су-27. С 1976 г. работы по этому самолету велись под руководством главного (ныне Генерального) конструктора М.П.Симонова, а с 1980 г. под руководством главного конструктора Кнышева А.И.

Первый самолет этого типа Т-10-1 был по сути "летающей платформой" – базой для создания сверхманевренных самолетов интегральной схемы. При соединении крыла с фюзеляжем по интегральной схеме увеличиваются внутренние объемы, что выгодно с точки зрения размещения топлива, оборудования и вооружения. Фюзеляж и крыло объединяются в одно целое – фюзеляж становится несущим, то есть создает значительную подъемную силу. Это позволяет уменьшить вес конструкции самолета, в частности, крыла. На этом самолете кроме "уплощения" фюзеляжа и интегральной схемы его сочленения с крылом было применено автоматическое отклонение носков крыла.

Принципиально новым в облике сверхманевренного самолета явилась продольная статическая неустойчивость на дозвуковых скоростях полета. Неустойчивый по перегрузке самолет имеет одно существенное преимущество перед устойчивым: для его балансировки требуется на горизонтальном оперении создать подъемную силу, направленную в ту же сторону, что и подъемная сила крыла. Вследствие этого отклонение управляемого стабилизатора для балансировки будет приводить к увеличению подъемной силы самолета. Чтобы управлять неустойчивым по перегрузке самолетом применяются различные автоматические устройства, обеспечивающие желаемую устойчивость и динамические свойства самолета. В такой компоновке значительно увеличивалось аэродинамическое качество и несущие свойства в результате обеспечения продольной балансировки средствами автоматики. При этом была решена проблема обеспечения устойчивости и управляемости путем применения системы улучшения устойчивости и управляемости (СУУ) в составе электродистанционной системы управления (ЭДСУ). Исследовательские полеты на Т-10-1 показали принципиальную возможность выхода на закритические углы атаки.




Следующим шагом в развитии сверхманевренных самолетов было создание Т-10-С, у которого с предыдущим Т-10-1 не было ничего общего, кроме кресла К-36. На самолете Су-27 в июне 1989 года на авиасалоне в Ле- Бурже летчик-испытатель Виктор Пугачев продемонстрировал новую фигуру пилотажа – "Кобру" (динамическое торможение): в горизонтальном полете самолет энергично задрал нос, не изменяя направления полета, увеличил угол атаки до 120° – как бы лег на спину, какое-то мгновение пролетел хвостом вперед, а затем быстро возвратился в горизонтальное положение. "Кобра Пугачева" – так окрестили эту фигуру журналисты, аккредитованные на авиасалоне.

Допустимый угол атаки самолета Су-27 составляет 26 градусов. Почему же, вопреки законам классической аэродинамики, самолет не сваливается на закритических углах атаки, скажем при выполнении той же "Кобры "?

Начнем с того, что при увеличении угла атаки до критического значения возрастают коэффициенты подъемной силы и лобового сопротивления. Увеличивается и проекция силы тяги двигателей на местную вертикаль. При этом уменьшается проекция подъемной силы на местную вертикаль. А при угле атаки, равном 90°, подъемная сила действует в направлении, обратном скорости горизонтального полета, т. е. превращается в силу лобового сопротивления. Сила тяги двигателей в этот момент уравновешивает силу тяжести самолета. По мере роста угла атаки более 90° проекция подъемной силы на вертикаль совпадает по направлению с силой тяжести самолета, а вертикальная составляющая силы тяги двигателей удерживает самолет от падения на хвост. Специалисты говорят, что самолет "висит на струе газов, выходящих из двигателей". По мере увеличения угла атаки более 90° вертикальная составляющая тяги двигателей уменьшается пропорционально синусу угла атаки, а вертикальная составляющая подъемной силы совпадает по направлению с вектором силы тяжести. При углах атаки более 120" вертикальная составляющая силы тяги двигателей самолета Су-27 становится меньше суммы двух сил, действующих по направлению силы тяжести. Этим ограничен угол атаки 120°. Увеличение этого угла грозит падением самолета "на спину". На закритических углах атаки неизбежны срывы воздушного потока с несущих поверхностей. Здесь уже действуют законы нестационарной аэродинамики: аэродинамические силы и моменты зависят не только от углов атаки и скольжения, но и от скорости их изменения. При нестационарном обтекании нарушается боковая балансировка самолета и возникает опасность его сваливания на крыло с последующим переходом в штопор. Однако инертность истребителя, небольшая продолжительность "Кобры" (около 10 секунд) и упреждающие действия летчика рулями позволяют избежать этого.

В настоящее время "Кобра " не может быть боевым маневром. Дело в том, что допустимый угол атаки самолета Су-27 составляет 26° и, перед тем как выйти на "Кобру", летчик должен отключить систему ограничения углов атаки. Конечно, это серьезная угроза безопасности полетов. Поэтому "Кобра Пугачева" – пока что фигура пилотажа, которая эффектно смотрятся на авиашоу, но назвать ее эффективным боевым маневром весьма затруднительно. Тем не менее, выполнение "Кобры" показало принципиальную возможность удержать самолет от сваливания на закритических углах атаки.

Чтобы увеличить угол атаки более 120°, нужно увеличить вертикальную составляющую тяги двигателей. Этого можно достичь либо за счет увеличения тяги двигателей, либо за счет отклонения вектора тяги в направлении оси подъемной силы. Первый путь ведет к утяжелению двигателя и самолета в целом. Поэтому в ОКБ им. П.О. Сухого был избран второй путь. Под руководством главного конструктора Конохова B.C. был создан самолет Су- 37. Прототипом самолета Су-37 является серийный истребитель Су-27 и его глубокая модификация – Су-35.

В ходе испытаний на Су-35 были выполнены такие сверхманевры, как "Кобра", "Хук", "Колокол", связанные с выходом на околонулевые скорости и большие углы атаки. Управление самолетом на околонулевых скоростях практически невозможно из-за недостаточной эффективности аэродинамических органов управления. Летчик на этих режимах полета не может ни влиять на скорость изменения пространственного положения самолета, ни удержать его на больших углах атаки независимо от того, успел ли бортовой локатор захватить цель и ракета сойти с пускового устройства. Стремление улучшить управляемость самолета на околонулевых скоростях привело к воплощению идеи изменения в полете направления тяги двигателей, которое позволяет выполнять управляемые фигуры пилотажа практически на нулевой и даже отрицательной скорости полета без ограничений по углу атаки. Даже штопор на этом самолете – управляемый маневр, а не опасный режим.



Отклоняемые сопла на Су-37





Принципиальным отличием самолета Су-37 от всех предыдущих самолетов семейства Су является отклоняемый вектор тяги (ОВТ) двигателей. Балансировка самолета относительно трех осей при малых скоростях полета на больших углах атаки обеспечивается применением ОВТ и новых органов управления. расположенных как позади центра тяжести самолета, так и впереди его. За счет этих органов может быть обеспечен также более высокий уровень поворотливости истребителя (максимальных угловых скоростей тангажа и рыскания).

На Су-37 можно выполнять фигуры пилотажа, свойственные только этому типу самолета. Например, "Чакру" (чакра – древнее оружие в Индии – металлическое кольцо с режущей кромкой), которая названа именем летчика-испытателя Евгения Фролова. При выполнении этой фигуры самолет с набором высоты уменьшает скорость (как при выполнении фигуры "Колокол") и из этого положения делает "мертвую петлю" на очень малых скоростях полета, практически разворачиваясь вокруг своего хвоста!

Угловую скорость разворота в вертикальной плоскости можно увеличить либо за счет увеличения нормальной перегрузки, либо за счет уменьшения скорости полета, либо одновременно и того, и другого. Увеличить перегрузку можно за счет увеличения вертикальной составляющей силы тяги двигателей, отклоняя век

тор тяги в плоскости симметрии самолета в сторону оси подъемной силы. Чем больше угол отклонения вектора тяги, тем больше сила, искривляющая траекторию полета самолета. Однако с увеличением угла отклонения вектора силы тяги не только увеличивается вертикальная составляющая этой силы, но и уменьшается ее продольная составляющая. Поэтому уменьшается скорость полета и суммарная сила, искривляющая траекторию. Вследствие этого радиус разворота самолета в вертикальной плоскости уменьшается, а угловая скорость – увеличивается. Когда угол тангажа возрастет настолько, что сумма подъемной силы и проекции силы тяги на ось подъемной силы станет больше проекции силы тяжести на ось подъемной силы, траектория самолета начнет искривляться вверх. В верхней точке "Чакры", когда самолет находится в положении "вниз головой", траекторию искривляют уже три силы: подъемная, тяжести и вертикальная составляющая силы тяги двигателей. После выполнения "Чакры" самолет возвращается в нормальное положение "головой вверх".

Если Су-27 на "Кобре Пугачева" выходит на угол атаки 120° и возвращается в исходное положение, то Су- 37 при выполнении "Чакры Фролова" изменяет угол атаки на 360". "Кобра" и "Чакра" – не единственные фигуры, выполняемые "Сухими". В арсенале самолетов этого семейства (от Су-27 до Су-37) есть еще "Колокол", "Двойная Чакра", форсированный разворот на "Кобре". Все это элементная база, на которой строится новая "суховская" технология ближнего маневренного воздушного боя.

В начале 1980-х годов в ответ на создание новых ракет "земля-воздух" и "воздух-воздух" возникла идея создания самолета-"невидимки", обнаружение которого наземными и бортовыми радиолокационными станциями было бы затруднено.

Особенно успешно работы в этом направлении проводились в США, завершившиеся созданием по программе "СТЕЛС" самолета F-117A. В операциях против Ирака "Буря в пустыне" (1991г.) и "Лиса в пустыне" (1998г.) США не потеряли ни одного самолета этого типа. Но во время агрессии НАТО против Югославии самолеты-"невидимки" несли потери как от ЗРК, так и от самолетов-истребителей в ближнем воздушном бою. Угловатые формы самолета F-l 17А делают его малозаметным для радаров, но ухудшают его маневренные характеристики настолько, что в маневренном воздушном бою он проигрывает даже самолетам третьего поколения.

Следующим шагом в развитии самолетов-истребителей было создание малозаметных маневренных самолетов 5-го поколения. В США таким самолетом является истребитель фирмы "Локхид Мартин" F-22A "Рэптор" (Орел- могильник), совершивший свой первый полет 7 августа 1997 года. Началу летных испытаний этого самолета предшествовал длительный цикл работ по экспериментальному самолету YF-22, созданному в рамках программы ATF, начатой в 1981г. Создатели самолетов 5-го поколения в США пришли к выводу, что наиболее рациональным крылом тактического истребителя является крыло прямой стреловидности (КПС). Но стреловидное крыло имеет один существенный недостаток: при сравнительно небольших углах атаки на концах стреловидного крыла возникает срыв потока (концевой эффект стреловидного крыла). Дальнейшее увеличение угла атаки при создании перегрузки (при маневрировании) ведет к распространению срыва потока по всему крылу.



Миг-29М подобно Су-37 должен был получить двигатели с У ВТ




В связи с этим на самолетах со стреловидным крылом на углах атаки меньших, чем критический, возникает опасность сваливания. Этого недостатка лишено крыло обратной стреловидности (КОС) из-за отсутствия концевого эффекта. Следует отметить, что по сравнению с самолетом с крылом прямой стреловидности самолет с КОС имеет значительно большее аэродинамическое качество при маневрировании, лучшую управляемость, особенно на малых скоростях, и малую скорость сваливания. КОС обеспечивает меньшую, чем К ПС, эффективную отражающую поверхность при радиолокационном облучении самолета в переднюю полусферу.

Учитывая эти обстоятельства, в ОКБ им. П.О.Сухого пошли по пути создания малозаметного сверхманевренного истребителя с крылом обратной стреловидности. Идея создания самолета с КОС возникла давно, но не могла быть реализована из-за трудности обеспечения прочности такого крыла. При маневрировании КОС подвергнуто сильным скручивающим нагрузкам. Попытки повышения жесткости традиционной металлической конструкции приводили к недопустимому увеличению веса крыла. Лишь в 1980-х годах, когда появились углепластики, был разработан метод целенаправленной ориентации осей жесткости, компенсирующий рост углов атаки при крутке крыла за счет поворота его сечений.

Первый в мире сверхманевренный самолет с КОС С-37 "Беркут" был создан в ОКБ им. П.О.Сухого. Практически с начала проектирования работы возглавил главный конструктор Михаил Погосян. Ему удалось довести самолет до летного состояния, но в марте 1998 года в связи с назначением на должность директора АВПК "Сухой" Погосян передал "бразды правления" своему заместителю Сергею Короткову.

Самолет С-37 выполнен по схеме "интегральный неустойчивый триплан" со среднерасположенным крылом обратной стреловидности. Его угол стреловидности по передней кромке равен -20 градусам в консольной части и прямой стреловидности в корневой части. Крыло имеет удлинение порядка 4,5 и выполнено почти на 90% из композиционных материалов. Управление по тангажу осуществляется цельноповоротным передним горизонтальным оперением (ПГО) и цельноповоротным основным оперением относительно малой площади.

Известно, что более 70% летчиков плохо переносят длительные перегрузки более четырех единиц даже в про- тивоперегрузочном костюме (ППК). Генеральный конструктор НПО "Звезда" Гай Северин предложил новую концепцию адаптивного катапультного кресла, обеспечивающего летчику возможность ведения маневренного воздушного боя со значительно более высокими, чем на прежних истребителях, перегрузками. Это позволило максимально использовать маневренные преимущества самолета с КОС. Таким образом, если маневренность самолета ограничена физическими возможностями летчика, то адаптивное катапультное кресло позволяет превосходить маневренность самолетов, не оборудованных такими креслами. Это еще одно подтверждение того, что сверхманевренность – это не только управляемый полет на закритических углах атаки, но и маневрирование с перегрузками, превышающими предельные.

25 сентября 1997 г. самолет С-37 "Беркут", пилотируемый летчиком-ис- пытателем Игорем Вотинцевым, совершил первый полет, а в августе 1999г. был представлен на международном авиакосмическом салоне МАКС-99 в г.Жуковском. В настоящее время самолет С-37 проходит заводские испытания и говорить о его возможностях на режиме сверхманевренности еще рано.

Фигуры пилотажа, выполняемые на сверхманевренных самолетах в вертикальной плоскости с выходом на зак- ритические углы атаки, еще не могут быть рекомендованы для использования в воздушном бою. Они могут использоваться в качестве составляющих элементов боевых маневров, выполняемых с интенсивным торможением на закритических углах атаки. При этом самолет выходит на "слепые" скорости сближения, при которых бортовые и наземные РЛС теряют его из виду.

Следует заметить, что одним из недостатков таких маневров является потеря механической энергии, ограничивающая на некоторое время возможности интенсивного маневрирования. В целях уменьшения этого времени могут быть использованы маневры: "переворот, Кобра" и "Полупереворот, Кобра". Еще со Второй мировой войны опыт воздушных боев показывает, что наиболее широкое применение в маневренных воздушных боях находят маневры в горизонтальной и наклонной плоскостях или маневрирование по пространственным траекториям.





Су-30МКИ



Чтобы увеличить "поворотливость" самолета с ОВТ при таком маневрировании, нужно отклонять вектор тяги не только в плоскости симметрии самолета, но и в плоскости, перпендикулярной ей. Особенно наглядно это можно показать на примере виража. Чтобы выполнить вираж (разворот), нужно выдержать строгое соотношение между углом крена и перегрузкой. У обычных маневренных самолетов максимальная угловая скорость в горизонтальной плоскости достигается при располагаемой нормальной перегрузке. Чтобы увеличить эту угловую скорость можно либо увеличить нормальную перегрузку, либо уменьшить скорость полета, либо одновременно сделать и то и другое.

Увеличивать нормальную перегрузку до значений более располагаемой можно за счет увеличения угла атаки вплоть до критического. Увеличивать угол атаки более критического не имеет смысла, поскольку на закритических углах атаки коэффициент подъемной силы (а, следовательно, и подъемная сила) уменьшается и создать перегрузку за счет аэродинамических сил больше той, которая соответствует критическому углу атаки, уже невозможно. Можно пойти по другому пути: увеличить нормальную перегрузку за счет увеличения проекции силы тяги двигателя на ось подъемной силы. В этом случае можно не увеличивать угол атаки более допустимого, что предотвращает опасность сваливания самолета.

Более значительно увеличить скорость разворота самолета в горизонтальной плоскости (увеличить "поворотливость" самолета) можно отклонением тяги двигателя в плоскости, перпендикулярной плоскости симметрии самолета. Тогда проекция силы тяги на продольную ось самолета увеличит силу, искривляющую траекторию в горизонтальной плоскости. Таким способом можно увеличить скорость разворота самолета в горизонтальной плоскости без увеличения нормальной перегрузки.

Увеличивать "поворотливость" самолета можно и за счет уменьшения скорости полета. Но при уменьшении скорости полета уменьшается как располагаемая, так и предельная по тяге нормальная перегрузка. Чтобы при уменьшении скорости полета увеличить нормальную перегрузку, нужно вектор тяги двигателей отклонить в плоскости симметрии самолета в сторону положительного направления оси подъемной силы. Отклонив же вектор тяги еще и в плоскости симметрии в сторону опущенной консоли крыла, можно увеличить "поворотливость" самолета за счет трех факторов: уменьшения скорости, увеличения нормальной перегрузки и увеличения силы, искривляющей траекторию самолета в горизонтальной плоскости.

Изменяя соответствующим образом углы отклонения вектора тяги в двух взаимно перпендикулярных плоскостях, можно увеличить маневренность ("поворотливость") самолета в любой наклонной плоскости. Отклонение вектора тяги в двух взаимно перпендикулярных плоскостях реализовано на многофункциональных истребителях Су-30МК (МКИ, МКК). Комплекс новых фигур пилотажа, продемонстрированный на этом самолете летчиком- испытателем Аверьяновым В.Ю. на авиасалоне МАКС-99, свидетельствует о том, что "сверхманевренность" уже стала новым направлением в развитии маневренных самолетов.

Создание двигателя с ОВТ АЛ-41 и принятие его в качестве базового для самолетов "Су", несомненно, повысит маневренные возможности этих самолетов любой модификации. Естественно напрашивается вопрос: зачем выполнять сложные и опасные маневры с выходом на закритические углы атаки, если за счет отклонения вектора тяги можно значительно увеличить маневренность самолета без угрозы безопасности полетов.

Маневры с выходом на закритические углы атаки значительно расширяют боевые возможности истребителей, а закритические углы атаки являются "аэродинамическим оружием", вопросы боевого применения которого еще не исследованы.



Полковник в отставке Илья КАЧОРОВСКИЙ, военный летчик 1-го класса.

Беседу вела специальный корреспондент журнала "Наука и жизнь" Т. Новгородская

"Никогда не забуду первый демонстрационный полет Су-27 в Париже, устроенный "Бритиш Аэроспейс" (British Аerospace) вместе с конструкторами и летчиками-испытателями "ОКБ Сухого", - таковы впечатления от "премьеры" истребителя у летчика британских ВВС Джона Фарлайта. - Виктор Пугачев делал вираж на Су-27 в 360 градусов за 10 секунд, средняя скорость на вираже - 36 градусов/с. А мы тогда лишь надеялись, что наш истребитель следующего поколения сможет достигнуть 25 градусов/с. Это та скорость, с которой пилот способен развернуть самолет, чтобы весь комплекс вооружения был готов к атаке. Если предположить, что наша новая машина встретится в бою с Су-27 через 10 секунд, ей останется, при том, если очень повезет, выпустить шасси и сесть. Многое увиденное нами на авиашоу может быть использовано боевым самолетом в реальном воздушном бою. Для обыкновенного зрителя аэрошоу лишь поверхностное действие, но если вы принадлежите к специалистам авиационной промышленности, то по маневрированию боевых машин вполне определите пределы, в которых может пилотировать самолет. И естественно, когда видите, что для Су-27 пределов нет или что самолет идет на вертикаль, доходит до остановки, падает обратно вниз, выходит в нормальный полет и делает это не раз и не два, а раз за разом, то понимаете, что это не исключение, не трюк, а норма. Сложность данного маневра не в том, как войти в режим, а как выйти из него. Обычно нам не разрешается превышать углы атаки 20-25 градусов: если превысить - теряем управление машиной... Но русские выполняют свои маневры, изменяя угол атаки в большом диапазоне, при этом оставаясь уверенными в управлении самолетом с абсолютно симметричным обтеканием. То же самое касается двигателей. Западные двигатели "страдают" строгими ограничениями по углам атаки. В полете на наших истребителях приходится думать одновременно и о маневрах противника, и о собственных ограничениях с аэродинамической точки зрения - о том, чего не должен делать летчик. Разумеется, такая ситуация не слишком комфортна для летчика, для него гораздо легче, когда можно делать все что угодно, чтобы суметь нацелиться на противника и преследовать его. То, чего добились русские, поразило нас до глубины души". Су-27 своими революционными дизайном и аэродинамикой установил новые стандарты в производстве истребителей. Человек, с именем которого неразрывно связана история его создания, - генеральный конструктор АООТ "ОКБ Сухого", доктор технических наук, действительный член Международной и Российской инженерных академий авиации и воздухоплавания, Герой России, лауреат Ленинской и Государственных премий Михаил Петрович Симонов. В 1995 году он награжден золотой медалью имени В. Г. Шухова, а в 1998 году редакция журнала "Aviation week and Space Technology" назвала его "легендой года". Его имя занесено на Доску почета Зала славы в Национальном музее авиации и космонавтики в Вашингтоне наряду с именами И. И. Сикорского, С. В. Ильюшина и Вернера фон Брауна. Интервью журналу "Наука и жизнь" Михаил Петрович дал впервые, хотя читает наш журнал с 1946 года. На вопросы редакции отвечает генеральный конструктор АООТ "ОКБ Сухого" М. СИМОНОВ.

М. П. Симонов.

Схема маневра "кобра".

Воздушный бой на режиме "колокол" (a - срыв доплеровского сопровождения, срыв захвата БРЛС противника и уход из-под атаки; б - выход из режема "колокол" и атака противника; в - захват и поражение противника).

Су-27 выполняет "кобру". Угол атаки 110 градусов.

Су-30 МКИ. Голубой цвет горения топлива в форсажной камере двигателя говорит о высоком качестве процесса сгорания.

Воздушный бой на вираже.

Самолет Су-35 выполняет маневр "кобра". На снимке видна конденсация влаги в зонах разрежения воздуха над передним горизонтальным оперением и центральной частью крыла.

Экспериментальный самолет Су-47. В момент выполнения высшего пилотажа вихри образующейся влаги как бы стекают с концов крыльев.

Михаил Петрович, всех, кто когда-нибудь был на авиашоу и видел, что могут самолеты Су, или хотя бы, сидя у телевизора, смотрел репортажи с авиасалонов, интересует, как и для чего создаются такие машины?

В 9-м классе я прочитал книгу "Некоторые причины ошибок пилотирования". От ошибок летчики никогда не застрахованы. Авиация как была, так и осталась очень требовательной и к пилотам, и к конструкторам. Из-за отказа техники или ошибки экипажа гибнет не только самолет, но и экипаж, и пассажиры.

Штопор - одно из самых сложных и опасных явлений. Это практически неуправляемый режим, сориентированный в пространстве самым неудачным образом: самолет вращается "носом" вниз. При ударе о землю происходит взрыв "воздушного пакета" и самолет разносит на мелкие куски. Казалось бы, чтобы решить проблему, достаточно обучить всех летчиков гражданской авиации тому, как узнавать "край сваливания", после которого самолет входит в штопор. Нужно сказать, что в авиации существует несколько похожих явлений, начинающихся с того, что машина дает крен, но не все они приводят к штопору. Однако, несмотря на то, что все военные летчики-истребители обучаются основным приемам выхода из различных видов штопора, далеко не всем им удается выйти победителями из реально возникшей ситуации (чаще всего из-за ошибок пилотирования, реже - из-за отказов авиационной техники). Есть самолеты, которые из-за своих конструктивных и аэродинамических особенностей вообще не могут выходить из некоторых видов штопора.

При эксплуатации гражданских самолетов экстремальные случаи нетипичны. А вот для боевых самолетов маневренность - условие выживания. Поэтому все конструкторские бюро мира работают над характеристиками маневренности. Именно она в сочетании с вооружением, которое несет самолет, и обеспечивает решение поставленных задач.

- Какие задачи ставятся при этом?

Маневренность - это способность самолета менять свое положение в воздушном пространстве. Естественно, для введения самолета в маневр должна быть необходимость. В боевой обстановке она возникает сама собой: надо занять такое положение в воздушном пространстве, чтобы самолет противника был в зоне действия твоего оружия, а твой самолет, наоборот, не попал бы в зону прицеливания. Понятно, что выиграет тот, кто сможет свою машину первым развернуть и направить на цель. Боевые машины классического типа 40-60-х годов прошлого столетия испытывали большие трудности в боях, поскольку характеристики их маневренности были довольно ограниченными. Обычно воздушные бои ведутся большими группами - самолетов двадцать: огромный "клубок" машин крутится в воздухе, и каждый хочет выжить. Самолеты старых классических конструкций мало отличались от самолетов противника, поэтому бои длились достаточно долго - 5-6 минут. Двигатели в этом случае работали на предельных режимах - соответственно расход топлива был большой. И даже после победы не всем удавалось долететь до дома. Каждый пятый самолет погибал после боя из-за того, что топливо кончалось и приходилось "плюхаться" туда, куда бог пошлет. Хорошо, если летчик катапультировался, а если пытался сесть, например, на шоссе на большой скорости - исход был предрешен. Летчики некоторых стран, вступая в бой, знали, что не смогут из него выйти. Чтобы улететь, надо было "подставить" "хвост", и он тут же попадал под прицел. Поэтому бились до конца, а когда загоралась красная лампочка - катапультировались из полностью исправного истребителя.

- ...Самолет одноразового использования?

Жизнь летчика ценнее... Но так или иначе недостатки в маневренности очень дорого обходятся. Поэтому прорыв в область режимов сверхманевренности, когда риск для жизни пилота и машины становится минимальным, стал задачей номер один.

- Можно ли в процессе разработки истребителя предугадать, что он будет обладать сверхманевренностью?

Обычно известно, "против кого" создается самолет. В то время, когда разрабатывался Су-27, мы "дружили" вместе с "Варшавским договором" против стран НАТО. Нам надо было сделать самолет, который бы значительно превосходил их истребители F-14, F-15, F-16 и F-18.

В нашей авиационной промышленности мы представлены "ОКБ Сухого" и большим количеством предприятий-соразработчиков. Например, радиолокаторы для нас делают НИИ и КБ. Мы не разрабатываем двигатель, мы говорим, какой он нам нужен, - и его создают в ОКБ имени А. М. Люльки. Такой научно-технический союз и обеспечивает разработку каждой составляющей истребителя на самом высоком уровне. Ведь для того, чтобы новый самолет был лучше и мог победить истребитель противника, мы должны иметь лучший в мире мотор, лучшую в мире радиолокационную станцию, лучшее в мире ракетное оружие и все остальное - тоже лучшее. Работая над СУ-27, мы сделали вроде бы неплохой самолет, превосходящий F-15, но намного ли? На "чуть-чуть". Поэтому снова в случае ближнего боя мы можем попасть в сложную "вертушку", где у самолетов будут равные возможности погибнуть или победить.

Мы поняли, что действительно решительное превосходство над противником можно получить, позволив летчику маневрировать не просто лучше, а в несколько раз лучше. Есть такое понятие, как угловая скорость разворота на цель. В бою преимущество реализуется у того истребителя, который успевает раньше развернуться. Мы пришли к выводу, что, если обеспечим своему самолету скорость разворота на цель в два раза больше, - его маневренность можно будет назвать сверхманевренностью.

Сверхманевренность - это способность истребителя из любого положения в воздушном пространстве развернуться на цель с угловой скоростью, по крайней мере в два раза превышающей угловую скорость разворота самолета противника.

- Вероятно, для обеспечения экстремальных режимов к двигателям тоже предъявляют особые требования?

Прежде всего, они должны отличаться лучшей тягой. Современный военный авиационный двигатель - турбореактивный, оснащенный форсажной камерой. (Форсаж - режим работы, при котором в камеру сгорания впрыскивается дополнительное топливо. Этим достигается значительное увеличение тяги, правда, за счет дополнительного расхода топлива.) Из двух двигателей, установленных на Су-27, вырывается поток газов, который толкает машину с силой 25 тонн (12,5 тонны - каждый двигатель). Аналогичные двигатели американских истребителей на момент создания F-15 развивали 10,8-11 тонн тяги. Есть, конечно, и другие требования. Неплохо, например, чтобы в управлении положением самолета в полете участвовали двигатели, сопла которых могут отклоняться на + 15 градусов. Особенно это важно при попадании самолета в процессе пилотирования в бою на закритические углы атаки. Критический угол атаки Су-27 составляет 24 градусов. А боевая обстановка иногда требует, чтобы самолет развернулся на угол атаки 60-90 градусов, а то и 120 градусов к направлению полета. Когда летчик дает команду на ручку управления разворота двигателя, - двигатель должен мгновенно отклониться на требуемый угол.

Сопла двух турбореактивных двигателей АЛ-31ФП многофункционального истребителя Су-30 МК способны отклоняться на 32 градуса по горизонтали и на 15 градусов по вертикали. Таким образом самолет может выполнять то, что недоступно другим машинам этого класса: "притормаживать", а потом разворачиваться на месте, подобно вертолету.

Когда в 1983 году мы впервые прилетели на выставку в Париж с заключением Государственного института по испытанию боевых самолетов о том, что по характеристикам истребитель Су-27 уступает американскому F-15, мы все равно считали, что Су-27 превосходит самолеты США. Заказчик же счел наше заявление слишком самонадеянным.

Американские истребители установили целую серию рекордов по скороподъемности. (Скороподъемность - это время с момента трогания самолета с места до достижения какой-либо высоты - 3000 м, 6000 м, 12 000 м и так далее.) То есть "с места" он должен достигнуть высоты за кратчайшее время. Мировые рекорды были поставлены тогда истребителем F-15.

Мы провели серию рекордных полетов на истребителе Су-27 и побили все рекорды F-15, тем самым сумев доказать, что наш самолет превосходит F-15 по скороподъемности.

- Как это происходило?

Самолет на старте должен стоять неподвижно, как спринтер. Но для того, чтобы обеспечить сцепление шин с бетоном, никаких тормозов не хватит. Чтобы удержать истребитель на месте, попытались использовать танк. Прицепили его тросом к замку на нижней поверхности самолета, но радовались недолго. Ровно секунду длился полный форсаж, потом раздался скрежет, и Су-27 потянул танк волоком по взлетной полосе. Пришлось искать другой выход. Рядом ремонтировалась взлетно-посадочная полоса, на ней работал огромный промышленный бульдозер "Катерпиллер". Подогнали бульдозер, прицепили к нему танк, а уже к танку - самолет. Старт Су-27 "с места" был обеспечен.

Двигатель в момент старта работает в предельном режиме. После того как замок откроется, самолет срывается с места, взлетает и идет на вертикаль. Находясь в вертикальном наборе высоты, он разгоняется до сверхзвуковой скорости. Ни один аппарат, ни одна космическая ракета на малых высотах вертикали скорость звука не превышает. Это происходит лишь на больших высотах, где плотность атмосферы мала. А мы уже на высоте 2000-3000 м переходим на сверхзвуковую скорость.

Тогда в полетах на авиасалоне были получены характеристики лучше американских.

В классическом бою два истребителя "крутят вертушку", пока кто-нибудь из них не займет положение для поражения цели. Но если мы войдем в бой и в первый же момент развернем самолет на 90 градусов к потоку - цель визируется, происходит ее захват, пуск ракеты и поражение. Таким образом, за счет сверхманевренности можно кардинально усовершенствовать ближний бой и в течение десятка секунд (а не минут) гарантировать себе победу.

- Говорят, поначалу считали, что Су-27 не выходит из штопора?

Да, таким было заключение ЦАГИ по испытаниям в аэродинамической трубе: самолет из штопора не выходит. А если боевой самолет не выходит из штопора, надо что-то предпринимать. Была разработана система ограничения предельных режимов, которая не дает возможности превысить самолету угол атаки в 24 градуса.

Ни одна модель самолета Су-27 в аэродинамической трубе ЦАГИ не вышла из штопора. Мы честно боролись, поэтому сделали 10-метровую полунатурную модель нашего самолета, подвесили ее к бомбардировщику Ту-16 и сбросили с высоты 10 000 м. Модель была оснащена автоматической системой управления и выходила на угол сваливания, при этом, если она не выходила из штопора, открывался посадочный парашют. Однако получилось так, что в половине режимов большая, свободно летающая модель выходила из штопора, а в половине - нет. Мы не могли сказать летчику: "Лети, все нормально". Поэтому согласились с ЦАГИ поставить на самолет ограничитель предельных режимов. Это было, конечно, странно: хотим работать на больших углах атаки, но не способны сделать для этого самолет.

Самое интересное произошло на испытаниях. Испытания самолета - это огромная работа, около 5 тысяч полетов, в которых машина проверяется на аэродинамику, на прочность, проводятся запуски ракет и бомбометание и многое другое. Еще до "кобры" В. Г. Пугачев выполнял выход на большие углы атаки. Я очень беспокоился, так как у американского истребителя F-16 было к тому времени несколько случаев, когда самолет выходил на угол атаки 60 градусов, а "слезть" с него не мог - хорошо что на нем стоял противоштопорный парашют, с помощью которого удавалось уходить с этого угла. Мы вели испытания по-другому. Очень переживали, когда Пугачев вышел на большой угол атаки, но он сумел вернуть самолет в исходный режим - все кончилось благополучно.

Впоследствии летные эксперименты показали, что при выходе на большие углы атаки развитие штопорного движения не происходит. Результаты свидетельствовали, что есть принципиальная возможность выхода самолета на сверхбольшие углы атаки с последующим возвращением на так называемые эксплуатационные режимы полета. Это и открыло перспективы для сверхманевренности. Но 20 лет назад мы этого еще не знали. Шли только первые экспериментальные полеты.

И вот в одном из полетов летчик-испытатель В. Котлов на Су-27 с неисправной системой воздушных сигналов (разгерметизировался приемник воздушного давления), имея неправильную информацию о числе Маха М (равном скорости полета, измеренной в скоростях звука) и пытаясь скомпенсировать "мах" углом набора высоты, "уравновесился" на высоте 8000 м вертикально и стал падать на хвост. Он полагал, что самолет установится в какой-то нормальный режим полета, - вместо этого он "подвис" между небом и землей. Это было настолько непривычно и непонятно: скорость вообще упала до нуля, а высота 8000 м. Он начал метаться по кабине, убрал форсажи, снова "дал". Самолет стал падать на хвост, появилась невесомость - впоследствии такой прием получил название "колокол".

- И все это происходило в считанные секунды?

Секунд 20. В воздухе - это очень много. При угле атаки 60 градусов (а мы имели разрешение только на 24градуса) самолет свалился в штопор, стал "носом" вниз и начал вращаться. Летчик тогда понял, что произошло, и сообщил на контрольно-диспетчерский пункт: "Штопор!" Так как считалось, что самолет Су-27 из штопора не выходит, набор команд на КДП был "высеченным на граните": "Катапультируйтесь на высоте не ниже 4000 м".

Вообще катапультирование никак нельзя назвать любимым занятием пилотов, поэтому во избежание тяжелых последствий летчик освободил управление и стал тщательно готовиться к катапультированию. Но в последний момент увидел, что самолет вышел из штопора сам и начал выходить из пикирования. Су-27 оказался предоставленным самому себе и сам вышел из опасного режима. Проверив управляемость самолета, Котлов совершил благополучную посадку на аэродроме.

- Может, это была случайность?

Поначалу так и решили. Ведь на 1000 ситуаций применения произошел только один такой случай. По большому счету это ничего не меняло. Но вскоре на Дальнем Востоке произошел еще более невероятный случай. Пилот Су-27 выполнял задание по выходу на перехват в автоматическом режиме. Он превысил допустимый угол атаки, в результате самолет свалился в штопор. По команде с земли летчик катапультировался, после чего Су-27 не только самостоятельно вышел из штопора, но и продолжил полет в автоматическом режиме, пока у него не закончилось все топливо. Вскоре в Липецке произошел третий случай, как две капли воды похожий на первый. Это уже заставило нас разработать специальную программу исследований. Как выяснилось в процессе испытаний, Су-27 отличался определенной "нестабильностью" во входе в режимы штопора и выходе из них. Было установлено, что применение наиболее "сильных" аэродинамических методов вывода из штопора не всегда приводит к его прекращению. И в то же время в ряде ситуаций самолет сам выходил из штопора при нейтральном положении ручки и педалей. Это объяснялось особенностями вихревой аэродинамики Су-27 на различных углах атаки и скольжения.

Значительный вклад в "победу" над штопором внес известный специалист по штопору, заслуженный летчик-испытатель СССР, летчик-космонавт, Герой Советского Союза Игорь Петрович Волк. Он провел испытания на штопор и обнаружил, что Су-27 выходит из всех режимов штопора.

- Почему же все-таки при испытаниях моделей было сделано противоположное заключение?

Оказалось, что не компоновка самолета имела значение, а масштабность модели (число Рейнольдса Re, которое связывает между собой скорость полета, размер самолета и вязкость воздуха, для настоящих машин значительно больше, чем для моделей, тем более маленьких).

- Сверхманевренность приводит к уменьшению "видимости" самолета на радарах. Каким образом?

Сверхманевренность - это система приемов ближнего воздушного боя. В случае если летчик получает сигнал, что он находится в зоне облучения локатора противника, первое, что ему надо сделать, - уйти на вертикаль. Набирая высоту и теряя скорость, он уходит из зоны "видимости" радиолокаторов, работающих на эффекте Доплера. (Эффект Доплера - изменение частоты волны, наблюдаемое при движении источника волны, относительно их приемника. - Прим. ред. ) Но и противник не дурак: тоже может развернуться. Но наш самолет движется по вертикали (фигура "колокол"), при этом скорость его стремится к нулю. А все локаторы видят цель именно по изменению скорости (работают по доплеровскому принципу). Если измеряемая скорость упала до нуля или по крайней мере до такой малой величины, что радиолокаторы противника не могут вычислить доплеровской составляющей, - мы для противника пропали. Визуально он нас видит, а на радиолокационном спектре - нет. Это означает, что если у противника ракета с радиолокационной (полуактивной, активной) головкой наведения, он все равно ее не запустит, потому что ракета не сможет произвести захват цели.

- А известны ли еще какие-нибудь способы сделать самолет "невидимкой"?

Такие самолеты-"призраки" только начинают появляться. Наибольший эффект от новой технологии ожидается для всех самолетов так называемого пятого поколения. Первым самолетом, созданным по технологии "стелс" ("призрак"), стал истребитель-бомбардировщик F-111А. Правда, истребитель из него так и не получился. Самолет имел очень низкую заметность, но плохие летные свойства - эдакий "граненый утюг" (граненые формы понадобились, чтобы лучи радиолокатора отражались от поверхности и направлялись совсем в другую сторону).

Я читала, что в процессе создания нового истребителя возникла необходимость кардинального усовершенствования бортового радиоэлектронного оборудования. Насколько оно надежно в режимах сверхманевренности?

Вообще-то в мире считают, что "русская" электроника не заслуживает внимания. Я другого мнения. Мы заказываем нашим соразработчикам радиолокаторы именно такие, какие нам нужны. Если локатор, который стоит на F-15, весит 244 кг, то аналогичный наш - в несколько раз больше. Но нас это не очень огорчает. Мы хотим, чтобы локатор обеспечивал обнаружение цели на определенной дальности. И эту дальность задаем большую. То же самое можно сказать и об оптико-электронной системе обнаружения целей и прицеливания.

Когда американские стратегические разведчики (SR-71) стали летать к нам "из-за угла" (со стороны Норвегии. - Прим. ред. ) вдоль всего побережья к Новой Земле, на охрану северных рубежей были поставлены истребители Су-27 и Су-30. Когда в очередной раз SR-71 "вынырнул" - наши уже были в воздухе. Мы решили их перехитрить и дали команду не включать радиолокатор, а включить электронно-оптическую систему, которая "видит" в инфракрасном спектре и на большом расстоянии. Когда SR шел на большой высоте, а наши самолеты навстречу ему, мы его видели на большом удалении. Поскольку границ "американец" не нарушал, ничего с ним сделать было нельзя, зато мы держали его под прицелом.

Так что говорить, что наше радиоэлектронное оборудование хуже, нельзя. Оно именно такое, как мы заказывали, ориентируясь на машины вероятного противника. А сделать такой самолет, который сможет поднимать нашу электронику, - не проблема.

А правда, что для улучшения аэродинамических качеств в самолетах нового поколения применена новая конструкция крыла?

Для того чтобы уменьшить волновое сопротивление крыла самолета при движении со сверхзвуковыми скоростями, надо придать крылу стреловидность, то есть отклонить его относительно вектора скорости (поставить под углом). Если крыло ставить таким образом, что при "болтанке" (возмущении потоков) крыло при своей деформации закручивается на отрицательные углы, то подъемная сила падает, но это не опасно с точки зрения разрушения крыла. Если сделать обратную стреловидность, порыв воздуха отклоняет крыло вверх - сразу увеличивается подъемная сила. А если сила увеличивается - крыло отклоняется дальше, угол опять растет. Несмотря на опасность разрушения, самолеты с обратной стреловидностью крыла имеют очень хорошие аэродинамические характеристики.

У американцев был такой экспериментальный истребитель Х-29, почему-то они сочли его конструктивное решение невыгодным. Мы же считаем создание подобного самолета задачей технически разрешимой с помощью композиционных материалов. Металлическое крыло не может выдержать дивергенции - разрушения крыла от скручивания. У нас были случаи, когда во время продувки в аэродинамических трубах разрушались стальные крылья модели с обратной стреловидностью крыла. Сегодня мы можем создавать специальную композиционную конструкцию на основе углеволокна, эпоксидной смолы, из органических материалов с высоким модулем - в частности, из тех самых тканей, из которых изготавливают бронежилеты.

- Какие надежды вы возлагаете на истребители пятого поколения в плане сверхманевренности?

Большие. Если наши "конкуренты" делают самолеты пятого поколения, они нам тоже нужны. Можно сказать, тут действует некий закон сохранения равновесия. Недавно мы были на одной зарубежной выставке, и там командующий ВВС одной из стран сказал: "Нам нужен ваш самолет. У нас есть разные истребители, но мы хотим, чтобы рядом с ними стоял русский, да с такими характеристиками, чтобы противник боялся". А значит, не шел на конфликт. Это и есть цель создания нового истребителя, который обеспечивал бы политическое равновесие в мире.

Под маневренностью самолета обычно понимают способ­ность его быстро изменять элементы траек­тории, т. е. величину скорости и направление движения. Та­
кое изменение можно производить как одновременно, так и раз­дельно. Например, при установившемся вираже изменяется только направление движения, а скорость не изменяется. На­оборот, при разгоне и торможении изменяется величина ско­рости, а направление движения остается неизменным.

Каждый тип самолета, в зависимости от его назначения, должен быть в состоянии производить определенные маневры. Так например, маневры тяжелых бомбардировщиков сводятся по существу к неглубоким виражам. Для пикирующих бомбар­дировщиков число маневров сильно возрастает: пикирование и резкий выход из него, глубокий вираж, боевой разворот и др. Особенно велико число маневров у самолета-истребителя.

Программа испытаний на маневренность должна строиться каждый раз конкретно, применительно к типу самолета и предъ­являемым к нему тактико-техническим требованиям. Здесь мож­но только указать на наиболее важные элементарные маневры: серийный установившийся вираж, неустановившийся вираж (раз-

ворот на 180°), горка, боевой разворот, переворот через крыло, бочка, петля и иммельман, пикирование и выход из него, разгон и торможение.

При испытании на маневренность рекомендуется устанавли­вать самопишущие приборы для записи основных параметров - скорости, высоты, угловых скоростей, перегрузок, углов откло­нения органов управления и усилий на них. По записям этих приборов легко оценить важнейшие параметры, характеризую­щие маневр и условия его выполнения: время выполнения ма­невра, начальную и конечную скорость и высоту, максимальные перегрузки и интенсивность выполнения маневра, усилия на ор­ганах управления и потребные углы отклонения, а также «запас» отклонений. Все эти параметры должны быть сравнены с такими

же параметрами для других типов самолетов аналогичного на­значения и с тактико-техническими требованиями к данному типу самолетов.

Для иллюстрации на фиг. 14.8 представлены типичные записи приборов при выполнении иммельмана. Из этой фигуры видно, что время иммельмана равно ~19 сек., макси­мальная перегрузка равна 4,2, выигрыш высоты равен 330 м.

На фиг. 14.9 такие же кривые приведены для случая разгона самолета. Время разгона со скорости 340 км/час до 590 км/час

равно 18,5 сек. Обычно строят величину ———- и отыскивают вре-

мя разгона от начального значения ———— -, обусловленного ин­

Нельзя указать параметры, характеризующие маневренность вообще. Для каждого маневра выбираются определенные пара­метры и величина их сравнивается с рекомендациями и с так- тико-техническими требованиями.